EXAMINATION 2020-21

(SAMPLE PAPER)

MARKING SCHEME

Class: XII

Subject: Physics (Theory)

Maximum Marks: 70 Marks

Time Allowed: 3 hours

QUESTION	SOLUTION	MARKS
No.		DISTRI-
		BUTION
Q1	$[F] = [MLT^{-2}], [r] = [L], [q] = [AT]$	1
	$:: \mathbf{F} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 q_2}{r^2} \implies 4\pi\varepsilon_0 = \frac{q_1 q_2}{Fr^2} \implies [\varepsilon_0] = \frac{[\mathbf{AT}]^2}{[\mathbf{MLT}^{-2}][\mathbf{L}^2]} = [\mathbf{M}^{-1} \ \mathbf{L}^{-5}]$	
Q2	(I) It is applied only for point charges. (ii) It is applied only on stationary charges only.	½ 1/2
		,
Q3	(i) $Q > 0$ (ii) $Q < 0$	<i>Y</i> ₂ <i>Y</i> ₂
Q4	10 V, as the potential inside the hollow metal sphere is same everywhere. OR	1
	Fotential will become $\frac{1}{K}$ times.	1
Q5	Electrical permittivity $(\varepsilon \text{ or } \varepsilon_0)$.	1
Q6	: Dry cells used in series will have high resistance (=10 Ω) and hence provide low current, while a car battery has low internal resistance (0.1 Ω) and hence gives high current for the same emf, needed to start the car.	1

	OR	
	on cooling the copper, its	1/2
	resistivity decreases. While for Si increses	1/2
Q7	: (i) Low value of k (torsional constant), (ii) High conductivity.	1/2
		1/2
Q8	Phase difference between the current and voltage is $\pi/2$. So, the power	1
	dissipation $P_{av} = P_{rms} \cos \phi$ is zero.	
	OR	
	The brightness will increase $(\because X_C \propto \frac{1}{2})$, and heat produced $H \propto I^2$,	
	where $I_{\rm rms} = \frac{1}{\sqrt{1-1}}$	1
	$\sqrt{X_c^2 + R^2}$	
	VC	
09		
QJ	b^2	
	$E_{\lambda} = \frac{1}{2}mv^2 = \frac{p}{2} \implies p = \sqrt{2mE_{\mu}}$	1/2
	$\kappa = 2 \qquad 2m \qquad 1 \qquad \sqrt{\kappa}$, -
	$\lambda = \frac{h}{h} = \frac{h}{h}$	
	$p \sqrt{2mE_k}$	
	As $\lambda \propto \frac{1}{\sqrt{2}}$	
	\sqrt{m}	
	$m_e < m_p$ $\lambda_p < \lambda_e$	1/2
	OR	
	λ	
	$\sqrt{2mE}$	
	$\sqrt{2mL}$	
010	The second secon	3
QIU	The energy of electron in n^{-1} Bohr orbit of hydrogen atom is given	
	$E = -\frac{13.6}{6V} + \frac{13.6}{5} \Rightarrow n^2 = 4 + \frac{13.6}{5} \Rightarrow n^2 = 2$	
	n^2 n^2 n^2 n^2 n^2 n^2 n^2	
	nh nh	
	Angular momentum of an electron in n^{m} orbit, $L = \frac{1}{2\pi}$.	1
	Putting $n = 2$, we get $L = \frac{2n}{n} = \frac{n}{n}$	
	3 2π π	
011	Δ	1
012	Α	1
013	A	1
Q14	С	1
Q15	1. A	1
	2. B	1
	3. C	1

	4. C	1
	5. B	1
016	1 Δ	1
QIU	2 B	1
	3. C	1
	4. B	1
	5. A	1
Q17	Drift velocity,	
	$v_d = \frac{eE\tau}{m} = \frac{eV\tau}{ml} \Rightarrow v'_d = \frac{e2V\tau}{m(l/2)} = 4v_d$	1
	When V is doubled and I is halved, drift velocity becomes 4 times original $v_{\rm d}.$	1
	OR	
	(i) The temperature coefficient of resistance for alloys is low. («) Alloys have has a high value of resistivity.	1 1
Q18	Consider a long colonaid of longth Long radius swith a stat and having a target	
	unit length. If a current I flows through the coil, then the magnetic field inside the coil is almost constant and is given by	
	Relevant Diagram(to be drawn)	1/2
	$B = \mu_0 n I$	
	Magnetic flux linked with each turn	
	$= BA = \mu_0 n IA$	1/2
	where A = πr^2 = the cross-sectional area of the solenoid.	
	\therefore Magnetic flux linked with the entire solenoid is	
	ϕ = Flux linked with each turn × total number of turns	
	$= u_0 \mathbf{n} [\mathbf{A} \times \mathbf{n}] = u_0 \mathbf{n}^2 [\mathbf{A}]$	1/2
	: Self-inductance of the long solenoid is	
	$I = \mu_0 n^2 IA$	
	If N is the total number of turns in the solenoid, then $n = N/l$ and so	1/2
	$_{\rm II}$ N ² A	72
	$L = \frac{\mu_0 \cdot \cdot \cdot \cdot}{1}$	
019		1
~ <u>~</u>	As the magnet is moved, its S-pole moves towards C_2 coil and its N-pole moves away from C_1 coil. By Lenz's law, the induced current in the two coils must flow clockwise when seen from the magnet side so as to oppose the change in flux	÷
	linked with the coils C_1 and C_2 .	1

	OR	
	Self induction	
	1. Self-Induction is the phenomenon of production of induced emf in a coil when a changing current passes through it.	1/2
	2. Self-inductance depends upon the size, shape and the number of turns of the coil. Larger the number of turns and area of cross-section, larger is the self-	
	inductance.	1/2
	Mutual induction	
	Mutual induction is the phenomenon of production of induced emf in one coil due to a change of current in the neighboring coil.	1/2
	The mutual inductance of two coils depends on the number of turns in the two coils, their geometrical shape and their relative separation.	1/2
020	Consider a pure conspiter C connected corece a course of alternating omfis given	
Q20	by	
	$\varepsilon = \varepsilon_0 \sin \omega t \dots (1)$	1/
	I = I ₀ cos ωt = I ₀ sin (ωt + π/2)(2)	/2
	where $I_0 = \omega C \varepsilon_0 = \frac{\varepsilon_0}{1/\omega C}$ = the current amplitude.	1/2
	Capacitive reactance. Comparing the relation,	/2
	$I_0 = \frac{\varepsilon_0}{1/\omega C}$	
	with the ohmic relation $I_0 = \frac{\varepsilon_0}{R}$, we find that the factor $\frac{1}{\omega C}$ is the effective resistance or opposition offered by the capacitor to the flow of a.c. through it. It is called capacitive reactance and is denoted by X_C .	Y ₂
	Thus $X_{\rm C} = \frac{1}{\omega \rm C} = \frac{1}{2\pi f \rm C}$	1/2
Q21	(i) $\frac{E}{E} = c$ speed of light	1
	(i) For an electrometry product structure transmission of the electric and the electr	
	(ii) For an electromagnetic wave travelling along y-direction, its electric and magnetic field vectors are along 2-axis and x-axis respectively. The direction of $\vec{E} \times \vec{B}$ is same as that of direction of wave propagation and $\hat{k} \times \hat{i} = \hat{j}$.	1
	OR	
	(a) Microwaves. (b) Radiowaves.	1/2 1/2

	(c) Gamma rays, (d) X-rays.	1/2 1/2
Q22	The phenomenon in which a rap of light travelling at an angle of incidence greater than the critical angle from denser to a rarer medium is totally reflected back into the denser medium is called total internal reflection .	1
	Necessary conditions for total internal reflection :	
	1. Light must travel from an optically denser to an optically rarer medium.	1/2
	2. The angle of incidence in the denser medium must be greater than the critical angle for the two media.	1/2
Q23	n-type semiconductor. This semiconductor is obtained by doping the tetravalent semiconductor Si (or Ge) with pentavalent impurities such as As, P or Sb of group V of the periodic table $ \int_{E_{v}}^{E_{v}} \int_{E$	1
Q24	Here µ ₁ = 1, µ ₂ = 1.5, u = -30 cm, R = +20 cm	
	As light travels from rarer to denser medium, so	
	$\frac{\mu_2}{\mu_1} - \frac{\mu_1}{\mu_1} = \frac{\mu_2 - \mu_1}{\mu_1}$	1/2
	$ v u \qquad R $ or $\frac{1.5}{v} + \frac{1}{30} = \frac{1.5-1}{20} = \frac{1}{40} $	1/2
	or $\frac{1.5}{v} = \frac{1}{40} - \frac{1}{30} = \frac{3-4}{120} = -\frac{1}{120}$	1/
	$\therefore v = -1.5 \times 120 = -180$ cm	/2
	The negative sign shows that a virtual image is formed in air.	1/2
	OR	
	. Here $R_1 = +15$ cm, $R_2 = -30$ cm, $\mu = 1.5$	1/2
	$\frac{1}{f} = (\mu - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$	1/2
	$= (1.5 - 1) \left[\frac{1}{15} - \frac{1}{-30} \right] = \frac{1}{20}$	1/2
	or $f = +20$ cm.	1/2

Q25	Width ratio,	
	$\frac{W_1}{W_1} = \frac{I_1}{W_1} = \frac{A_1^2}{M_1^2}$	1
	$w_2 I_2 a_2^2$	
	$=\left(\frac{\sqrt{2}}{\sqrt{2}}\right)^2 = 2.1$	1
	(1)	
026		1
QZU	K.E. of the electron,	1
	$K = 3.4 eV = 3.4 \times 1.6 \times 10^{-19} J$	
	de-Broglie wavelength associated with the electron,	
	$\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mK}}$	1
	6.63×10 ⁻³⁴	
	$\sqrt{(2 \times 9.1 \times 10^{-3} \times 3.4 \times 1.6 \times 10^{-19})}$	1
	$= 6.63 \times 10^{-10} \mathrm{m}$	-
	OR	
	Mass of α-particle	
	$m = 4 m_{\pi} = 4 \times 1.67 \times 10^{-27} kg$	
	Charge on α -particle = 2e	1
	If the α -particle acquires velocity v, then	
	$qV = \frac{1}{2} mv^2$ or $2 eV = \frac{1}{2} m^2 v^2$	
	$\therefore mv = \sqrt{4meV}$	1
	h h	-
	$\lambda = \frac{\pi}{mv} = \frac{\pi}{\sqrt{4meV}}$	
	$- 6.6 \times 10^{-3}$	
	$= \frac{1}{\sqrt{4 \times 4 \times 1.67 \times 10^{-27} \times 1.6 \times 10^{-1} \times 200}} \mathrm{m}$	
	$=\frac{6.6\times10^{-34}}{10^{-234}\times10^{-234}\times10^{-200}}=\frac{6.6\times10^{-11}}{02.47}$	
	$= 0.07138 \times 10^{-11} \text{m} = 0.007138 \text{ Å}.$	1
Q27	The linear width of central bright maximum is given by	
	$\beta_0 = \frac{2D\lambda}{2}$	1
	(i) If monophromotic vollow light is replaced with red light, the linear width of the	
	central maximum increases because $\lambda_{red} > \lambda_{yellow}$.	1

	(ii) If the distance (D) between the slit and the screen is increased, the linear width of the central maximum increases.	1
	OR	
	Fringe width, $\beta = \frac{D\lambda}{d}$	1/2
	Angular separation, $\theta = \frac{\beta}{D} = \frac{\lambda}{d}$	1⁄2
	(i) When the screen is moved away from the slits, the distance D increases. Fringe width β increases but angular separation $\theta(=\lambda/d)$ remains unchanged.	1
	(ii) The interference pattern becomes less and less sharp. When the source slit becomes so wide that the condition $\frac{s}{c} < \frac{\lambda}{d}$ is not satisfied, the interference pattern	1
	disappears. But the angular width $\theta(=\lambda/d)$ remains unchanged.	
Q28	electrostatic force of attraction between the nucleus and the electron is $F = \frac{k Ze.e}{r} = \frac{k Ze^2}{r}$	
	To keep the electron in its orbit, the centripetal force on the electron must be	
	equal to the electrostatic attraction. Therefore, $mu^2 = kT a^2$	1/2
	$\frac{mv}{r} = \frac{\kappa z e}{12}$	
	or $mv^2 = \frac{kZe^2}{r}$ (1)	
	or $r = \frac{kZe^2}{mv^2}$ (2)	
	where m is the mass of the electron and v , its speed m an orbit of radius r . Bohr's quantisation condition for angular momentum	
	$L = mvr = \frac{nh}{2}$	1/2
	or $\frac{r=nh}{2\pi}$ (3)	
	From equations (2) and (3), we get	
	$\frac{kZe^2}{mv^2} = \frac{nh}{2\pi mv}$	
	Or $v = \frac{2\pi k Z e^2}{nh}$ (4)	1/2
	Substituting this value of vm equation (3), we get nh nh	/2
	$r = \frac{1}{2\pi m} \cdot \frac{1}{2\pi k Z e^2}$	1/
	or $r = \frac{1}{4\pi^2 m k Z e^2}$ Energy of the electron It includes the electron's kinetic energy and the	/2
	electrostatic potential energy of the two charges. Kinetic energy of the electron in nth orbit is	
	K.E. = $\frac{1}{2}mv^2 = \frac{kZe^2}{2r}$ [Using equation (1)]	1/
	Potential energy of the electron in nth orbit is P.E. = $k = \frac{q_1q_2}{r_1} = \frac{k Ze.(e)}{r_1} = -\frac{kZ^{-2}}{r_1}$	/2
	Hence total r energy of the electron in nth orbit is $E_n = K.E.+P.E.$	
	$k = \frac{kZe^2}{2} - \frac{kZe^2}{2} = -\frac{kZe^2}{2}$	
	$\frac{2r}{kZe^2} \frac{r}{4\pi^2} \frac{2r}{mkZe^2}$	
	$=$ $\frac{1}{2}$ $\frac{n^2h^2}{n^2h^2}$	

Q29IUsing equation (5)]
or
$$E_n = -\frac{2\pi^2 mk^2 \pi^2 r^4}{k^2 h^2}$$
 ...(6)%Q29. When a charged particle having charge q and velocity \vec{v} enters a magnetic
field B, it experiences a force% $\vec{F} = q(\vec{v} \times \vec{B})$ When the initial velocity makes an arbitrary angle with the field direction. A
uniform magnetic field B is set up along +ve X-axis. A particle of charge q and
mass meters the field \vec{B} with velocity \vec{v} inclined at angle 0 with the direction
of the field \vec{B} % \vec{V} \vec{V} \vec{V} % \vec{V} \vec{V}

1⁄2

It exerts a force on current carrying wire CD. The force acting on length I of the wire CD will be

$$F_2 = I_2 l B_1 \sin 90^\circ = I_2 l \cdot \frac{\mu_0 I_1}{2\pi r} = \frac{\mu_0 I_1 I_2}{2\pi r} . l$$

Force per unit length,

$$f = \frac{F_2}{l} = \frac{\mu_0 I_1 I_2}{2\pi r}$$

Parallel currents attract and antiparallel currents repel.

Definition of ampere.

When $f = I_2 = 1 A$ and r = 1 m, we get

$$f = \frac{\mu_0}{2\pi} = 2 \times 10^{-7} \text{Nm}^{-1}$$

One ampere is that value of steady current, which on flowing in each of the two parallel infinitely long conductors of negligible cross-section placed in vacuum at a distance of Im from each other, produces between them a force of 2×10^{-7} ¹/₂ newton per metre of their length.

Definition of coulomb in terms of ampere. If a steady current of 1 ampere is set up in a conductor, then the quantity of charge that flows through its crosssection in 1 second is called one coulomb.

1⁄2

1/2

$$\frac{\mu_{1}}{v} - \frac{\mu_{2}}{u} = (\mu_{2} - \mu_{1}) \left[\frac{1}{R_{1}} - \frac{1}{R_{2}}\right]$$
or $\frac{1}{v} - \frac{1}{u} = \left[\frac{\mu_{2} - \mu_{1}}{\mu_{1}}\right] \left[\frac{1}{R_{1}} - \frac{1}{R_{2}}\right] \dots (3)$
If the object is placed at infinity (u = ~), the image will be formed at the focus, i.e., $\frac{1}{v} = \frac{1}{v} = \frac{\left[\frac{\mu_{2} - \mu_{1}}{\mu_{1}}\right] \left[\frac{1}{R_{1}} - \frac{1}{R_{2}}\right] \dots (4)}{\left[\frac{1}{R_{1}} - \frac{1}{R_{2}}\right] \dots (4)}$
we know
$$\frac{1}{f_{v}} = (\frac{\mu_{v}}{\mu_{o}} - 1)(\frac{1}{R_{v}} - \frac{1}{R_{2}})$$
in water
$$\frac{1}{f_{v}} = (\frac{\mu_{v}}{\mu_{o}} - 1)(\frac{1}{R_{v}} - \frac{1}{R_{2}})$$
solving we get
$$\frac{f_{w}}{f_{a}} = \frac{(\frac{\mu_{v}}{\mu_{o}} - 1)}{(\frac{\mu_{v}}{R_{v}} - 1)}$$

$$f_{w} = \frac{(1.5 - 1)}{(1.28 - 1)}$$

$$f_{w} = \frac{(2 \times 0.5)}{0.128} = 0.78m$$

$$2df = (0.78 - 0.20)m$$

$$= 0.58m$$
OR
In equilateral prism ABC

	$A = 60^{\circ} \delta_m = 30^{\circ}$	
	$as i + i = A + \delta_m \Longrightarrow i = 45^{\circ}$	
	$r + r = 60^{\circ} \Longrightarrow r = 30^{\circ}$	
	also as	1
	sin 45°	
	$\mu = \frac{1}{\sin 30^{\circ}}$	
	$u = \sqrt{2}$	
		1
Q33	Line resistance	
	= Length of two-wire line	
	× Resistance per unit length = 2 × 15 km × 0.5Ω km ⁻¹ = 15Ω	1
	Voltage at which power is sent through the line = 4000 V	1
	Power supplied to town sub-station	
	$= 800 \text{ kW} = 800 \times 10^3 \text{ W}$	
	\therefore rms value of current in the line	
	Power 800×10^3 and 2000	1
	$= \frac{1}{\text{Voltage}} = \frac{1}{4000} \text{ A} = 200 \text{ A}$	
	(a) Line power loss	1
	$= I^2 R = (200)^2 \times 15 W = 600 kW.$	
	(b) Power supplied by the plant	
	= Power received at sub – station + line power loss = 800 + 600 = 1400 kW .	4
		1
	OR	
	Average value of a.c. It is defined as that value of direct current which sends the	
	same charge in a circuit in the same time as is sent by the given alternating	1
	current in its half time period. It is denoted by	
	I _{av} or I _m	

amount of charge that flows through the circuit in small time dt is given by	
$dq = I. dt = I_0 \sin \omega t. dt$	
The total charge that flows through the circuit, say in the first half cycle, i.e., from t = 0 to t = T / 2 is given by	1
$q = \int_0^{T/2} dq = \int_0^{T/2} I_0 \sin \omega t dt = I_0 \left[-\frac{\cos \omega t}{\omega} \right]_0^{T/2}$	
$= -\frac{I_0}{2\pi/T} \left[\cos\frac{2\pi}{T}t\right]_0^{T/2}$	
$= -\frac{I_0 T}{2\pi} [\cos \pi - \cos \theta] \left[\because \omega = \frac{2\pi}{T} \right]$	
$= -\frac{I_0 T}{2\pi} [-1 - 1] = \frac{I_0 T}{\pi}$	1/2
\therefore The average value of a.c. over the first half cycle is	
$I_{av} = \frac{\text{Charge}}{\text{Time}} = \frac{q}{T/2} = \frac{2q}{T} = \frac{2}{T} \cdot \frac{I_0 T}{\pi}$	1/2
$I_{av} = \frac{2}{\pi} I_0 = 0.637 I_0$	
(ii) Given peak value of current $I_0 = 15A$	
As rms value of current is	
$I_{rms} = \sqrt{2}I_0$	T
therfore	
$I_{rms} = 1.41 \times 15$	1
=21.15 <i>A</i>	