Marking Scheme - Sample Paper 2020-21

Q. No.	ANSWER	MARKS
1.	(i)(a) (ii) (d) (iii) (a) (iv) (b)	1X4
2.	(i)(b) (ii) (d) or (a) (iii) (a) (iv) (a)	1X4
3.	(c)	1
4.	(c) OR (d)	1
5.	(d)	1
6.	(a) OR (b)	1
7.	(d) Or (a)	1
8.	(a)	1
9.	(a)	1
10.	(c)	1
11.	(b)	1
12.	(b) OR (a)	1
13.	(b)	1
14.	(d)	1
15.	(a)	1
16.	d OR (c)	1
17.	a) Methyl halide< Allyl halide< benzyl halide< Tertiary Alkyl halide	1
	b) due to resonance C-X bond have partial double bond character and is difficult to	1
	break or any other reason .	
18.	The elevation (ΔT b) in the boiling point = 354.11 K – 353. 23 K = 0.88 K	1/2
	Substituting these values in expression (2.33) we get	4
	$M_2 = 2.53 \text{ K kg mol}^{-1} \times 1.8 \text{ g} \times 1000 \text{ g kg}^{-1}$	1
	$0.88 \text{ K} \times 90 \text{ g}$ = 58 g mol ⁻¹	
	Therefore, molar mass of the solute, $M_2 = 58 \text{ g mol}^{-1}$	1/2
19.	Explanation by VBT - Hybridization :d2sp³, geometry: octahedral	1+1
27.	OR	
	(i) No. of unpaired electron =5, paramagnetic moments = $\sqrt{5(5+2)}$	
	<u> </u>	1
	$=\sqrt{35}$ =4.9 BM	
	(") due to process of uppointed electrons in 2d orbitals (DICL 12-in uppoint (Cl	
	(ii) due to presence of unpaired electrons in 3d orbitals [NiCl ₄] ²⁻ is paramagnetic (Cl ₂ is week light which can not point up the electrons of d orbitals and in [Ni(CO)].	1
	is weak ligand which can not pair up the electrons of d orbitals and in [Ni(CO) ₄] ligand CO is strong which pairup the d-electron therefore no unpaired electrons in d	
	subshell therefore diamagnetic.	
	substituti dictorore diamagnetic.	
20.	(i) Rxn. is a complex one because ½ atom of B is not possible. It means order of rxn.	2
	is 1.5 but molecularity is never in fractions. It means reaction occurs in more than	
	one step so is a complex one .	
	(ii) Units of K willbe mol ^{-0.5} L ^{0.5} s-1	

	OR	
	Let order of reaction wrt A is x & wrt B is y	
	R1=K [A] ^X .[B] ^Y	
	R1= $K(0.20)^{X} \cdot (0.03)^{y} = 5.07 \times 10^{-5}$	1
	R2=K(0.20) ^X .(0.10) ^y =5.07x10 ⁻⁵ On Solving Eq. Y = 0	
	R ₁ = K(0.20) ^X .(0.03) ^y =5.07x10 ⁻⁵	
	$R_3=K(0.40)^X.(0.05)^Y=14.3\times10^{-5}$	
	On solving x = 1.5 So order of reaction w.r.t. A is 1.5 and w.r.t. B is 0	1
21.	The formation of ether is a nucleophilic bimolecular reaction ($S_N 2$) involving the attack of alcohol molecule on a protonated alcohol, as indicated below:	2
	(i) $CH_3-CH_2-\overset{\circ}{O}-H + \overset{\circ}{H}^+ \longrightarrow CH_3-CH_2-\overset{\circ}{O}-H$	
	(ii) $CH_3CH_2 - \overset{\circ}{O}: + CH_3 - \overset{\circ}{C}H_2 - \overset{\circ}{O} + CH_3CH_2 - \overset{\circ}{O} - CH_2CH_3 + H_2O$	
	(iii) $CH_3CH_2 \xrightarrow{\bullet} CH_2CH_3 \longrightarrow CH_3CH_2 - O - CH_2CH_3 + \overset{+}{H}$	
	ÖH Ö−H Ö−H H−Ö5 :Ö−H Ö → → → → → → → → → → → → → → → → → →	
	(I) (II) (IV) (V)	
22.	T = 2.303 /k log Ao/A	1/2
	$t 99\% = 2.303/k \log 100/1$ (i)Dividing Eq. (i) by (ii) $t 90\% = 2.303/k \log 100/10$ (ii)	1/2
	t 99% = 2.303/k log 100/1	
	$t = \frac{100\%}{100\%} = \frac{2.303}{k} = \frac{100}{100} = \frac{100}{1$	1/2
	t 99% = 2 log10 t 90% 1 log10	
	t 99% = 2xt 90%	1/2
23.	Racemic mixture will be given by 2-Chlorobutane as it is an optically active compound	1+1

	When 2-Chlorobutane undergoes SN1 reaction, both front and rear attacks are	
	possible resulting in formation of racemic mixture.	
24.	Correct str.	1+1
25.	10 ⁻³ mol percent means 100 moles of NaCl are	2
	doped with 10 ⁻³ moles of AlCl ₃	
	∴ 1 mole of NaCl is doped with AlCl ₃	
	$= 10^{-3} / 100 = 10^{-5}$ mole Since each Al ³⁺ ion introduces two cation vacancies	
	∴ Concentration of cation vacancies	
	$= 2 \times 10^{-5} \text{ mol/mol of NaCl}$	
	$= 2 \times 10^{-5} \times 6.02 \times 10^{23} \text{ mol}^{-1}$	
	$= 2 \times 6.02 \times 10^{18} \text{ mol}^{-1}$	
26.	(i) The E^0 (M^{2+}/M) values are not regular which can be explained from the	2
	irregular variation of ionization energy and sublimation energy of Mn due to	
	half-filled orbitals.	
	(ii) due to small energy difference between	1
	(n-1) d &ns orbital as a result both (n-1)d &ns electrons take part in bond	
	formation.	
	OR (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	1.5
	(i)E ^o for Cr^{3+}/Cr^{2+} is -0.4V i.e. negative, this means Cr^{3+} ions in the	
	solution cannot be reduced to Cr ²⁺ easily i.e. Cr ³⁺ is stable. As Mn ³⁺ /Mn ²⁺	
	is +1.5V i.e positive means Mn ³⁺ can easily reduced to Mn ²⁺ ions in	
	comparison to Fe ³⁺ ions. Thus relatively stability of these ions is:-	
	$Mn^{3+} < Fe^{3+} < Cr^{3+}$	
	(ii) The oxidation potentials for the given pairs will be +0.9V, +1.2V and	1.5
	0.4V. Thus, the order of their getting oxidized will be in the order Mn>Cr>Fe.	
27.	(i) Aniline undergoes resonance and as a result, the electrons on the N-atom	1
21.	are delocalized over the benzene ring. Therefore, the electrons on the N-atom	1
	are less available to donate. On the other hand, in case of methylamine (due to the +I	
	effect of methyl group), the electron density on the N-atom is increased. As a	
	result, aniline is less basic than methylamine. Thus, pKb of aniline is more than	
	that of methylamine.	1
	(ii) Ethylamine is soluble in water whereas aniline is not: Ethylamine when added to	
	water forms intermolecular H-bonds with water. Hence, it is soluble in water. But	
	aniline does not undergo H-bonding with water to a very large extent due to the	1
	presence of a large hydrophobic $-C_6H_5$ group. Hence, aniline is insoluble in water.	
	(iii) Friedel-Crafts reaction is carried out in the presence of AlCl ₃ . But	
	AlCl ₃ is acidic in nature, while aniline is a strong base. Thus, aniline reacts with AlCl ₃ to form a salt (as shown in the following equation). Due to the positive	
	charge on the N-atom, electrophilic substitution in the benzene ring is deactivated.	
	pharge on the 14-atom, electrophine substitution in the benzene ring is deactivated.	I

	Hence, aniline does not undergo the Friedel-Crafts reaction. OR (i) Propanamine contains three carbons. Hence, the amide molecule must contain four	1
	carbon atoms. Structure and IUPAC name of the starting amide with four carbon atoms is	
	CH_3 – CH_2 – CH_2 – $C-NH_2$ O	1
	Butanamide	
	Aromatic primary amines react with nitrous acid (prepared in situ from NaNO2 and a mineral acid such as HCl) at low temperatures (273-278 K) to form diazonium salts. This conversion of aromatic primary amines into diazonium salts is known as diazotization. For example, on treatment with NaNO2 and HCl at 273–278 K, aniline produces benzenediazonium chloride, with NaCl and H2O as by-products. NH2 NaNO2 + 2HCl 273 - 278 K Aniline Benzenediazonium chloride (iii) Methylamine and dimethylamine can be distinguished by the carbylamine test. Carbylamine test: Aliphatic and aromatic primary amines on heating with chloroform and ethanolic potassium hydroxide form foul-smelling isocyanides or carbylamines. Methylamine (being an aliphatic primary amine) gives a positive carbylamine test, but dimethylamine does not. CH ₃ - NH ₂ + CHCl ₃ + 3KOH $\stackrel{\Delta}{\longrightarrow}$ CH ₃ - NC + 3KCl + 3H ₂ Methylamine (1 ⁰) Methylisocyanide (foul smell) (CH ₃) ₂ NH + CHCl ₃ + 3KOH $\stackrel{\Delta}{\longrightarrow}$ No reaction	1
28.	In <u>primary structure</u> specific sequence of amino acid are present joined by covalent bonds.	1 1
	Secondary structure is responsible for the shape of a protein. α -helix and β -pleated in which	1
	polypeptide chains have peptide bonds. <u>Tertiary structure</u> represents overall folding of polypeptide chain and give rise to the fibrous or globular molecular shape.	
29.	$d = \frac{Z \times M}{a^3 \times NA}$	1
	w 11.1/1	

	Z=?, $a= 289 \text{ pm} = 289 \text{ X} \cdot 10^{-10} \text{cm}, M=52 \text{g} \cdot \text{mol}^{-1}, d=7.2 \text{g} \cdot \text{cm}^{-3}$	
	Z= d x a ³ x N = 7.2(g cm ⁻³) x [289 x 10^{-10} cm] ³ x 6.022 x 10^{23} (atom mol ⁻¹)	1
	M 52 g mol^{-1} Correct answer $Z = 2$	1
30.	(I) It is not soluble in blood even under high pressure. (ii) Being monoatomic they have weak dispersion forces.	1 1
	(ii)I-Cl bond is weaker than l-l bond	1
31.	(i)The gas 'A' is NO2 whereas 'B' is N2O4.	3
31.	XNO3 + H2SO4 > XHSO4 + HNO3	
	Salt (conc.)	
	Cu + 4HNO3 (Conc.)>Cu (NO3)2 + 2NO2 + 2H2O Blue Brown (A)	
	2NO ₂ (on cooling)>N ₂ O ₄	
	Colourless(B)	1
	(ii)(a)Acidic strength:HOCl <hclo2<hclo3<hclo4< th=""><th>1</th></hclo2<hclo3<hclo4<>	1
	(b)Acidic strength: HF <hcl<hbr<hi or<="" th=""><th></th></hcl<hbr<hi>	
	(i) (a)6XeF4+12H2O>4Xe+2XeO3+24HF+3O2	3
	(b)AgCl(s) +2NH3 aq)>[Ag(NH3)2]Cl(aq)	
	© 4NaCl+MnO2+4H2SO4>MnCl2+4 NaHSO4+2H2O+Cl2	1+1
	(i)Partial hydrolysis of XeOF4	
	XeF6+H2O>XeOF4+2HF	
	Structure-square pyramidal.	
32.	Ans-: CH3CH2CH2COOCH2CH2CH2CH3+H2O H2SO4	3
	(A) Butyl Butanoate CH3CH2CH2COOH (B)	
	+	
	СH ₃ CH ₂ CH ₂ CH ₂ OH (С)	
	$\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{OH}$ $\xrightarrow{\text{K}_2\text{Cr}_2\text{O7}}$ $\text{CH}_3\text{CH}_2\text{CH}_2\text{COOH}$	
	(c) (B)	
	$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH} & \xrightarrow{\text{Conc.}} & \text{CH}_3\text{CH}_2\text{CH} = \text{CH}_2 & \text{(bute-1-ene)} \\ & & \text{H}_2\text{SO}_4 & \end{array}$	
	(ii) (a) In 2,2,6 trimethyl cyclohexaunone there is streric hinderance and inductive effect of 3 methyl groups, It does not form cyanohydrin in good yield.	1+1

	(b) In benzoic acid the Carboxyl group is meta directing because it is electron-withdrawing There is +ve charge on ortho and para positions. Electrophillic substitution takes place at meta-position.	
	OR	3
	COCH ₃ $+ NH_2 - NH$ $+ NH_2 - NH$ $+ NO_2$	
	⇒ cooh Co	1+1
	(i)	
	(ii) (a)Alcohols have intermolecular H-bonding but Aldehydes do not .(b) Because it does not possesses α-hydrogen atom.	
33.	At anode: Al(s) \rightarrow Al ³⁺ (aq) +3e] x 2 At cathode: Ni ²⁺ (aq) + 2e \rightarrow Ni (s)]x3	1
	2Al (s) +3 Ni ²⁺ (aq) \rightarrow 2 Al ³⁺ (aq) + Ni(s) Here n = 6,	1
	$[Al^{3+}] = 0.001M = 1 \times 10^{-3}M, [Ni^{2+}] = 0.5M$ Correct formula	1
	Correct answer and unit Ecell = 1.46 V (ii) Oxidation takes place at anode. Now higher the oxidation Potential,	
	easier to oxidize. Oxidation potential of Br ⁻ , H2O,F ⁻ are in the following order. 1.9, 1.23 . 2.87 OR	2
	(i)Cell reaction is as follows. Zn(s) + Cu ²⁺ → Zn ²⁺ + Cu(s)	
	n=2 T=298K Ecell=(E ⁰ Cu ²⁺ /Cu-E ⁰ Zn ²⁺ /Zn)-0.0591/n log[zn ⁺²]/Cu ⁺²]	1
	0.34V-(-0.76)-0.02955 log 10 ⁻⁴ /10 ⁻² 1.10 - 0.02955V log 10-2	1
	= 1.10V+2 X 0.02955V = 1.10V + 0.0591 V = 1.1591V	1
	(ii)Emf of a cell depends on following factor- Nature of electrodes, Temperature and Concentration of half cells	2