BAL BHARATI PUBLIC SCHOOL

 PRE-BOARD EXAMINATION (2023-24)Subject -Mathematics Basic(241)
Class - X
Answer Key for Set - B

Marking scheme		
Section - A		
Q1.	b) $(0,-3)$	1
Q2.	d) 12.5 cm	1
Q3.	a) 15°	1
Q4.	c) 75°	1
Q5.	a) 10 m	1
Q6.	d) $30-40$	1
Q7.	b) 10	1
Q8.	a) 2	1
Q9.	d) $1 / 6$	1
Q10.	b) 17.5	1
Q11.	b) 2	1
Q12.	c) $x^{2} y^{2}$,
Q13.	c) 4	1
Q14.	b) $\frac{2}{3}$	1
Q15.	c) $\triangle \mathrm{PQR} \sim \Delta \mathrm{NSM}$	1
Q16.	a) 0	1
Q17.	c) $550 \mathrm{~cm}^{2}$	1
Q18.	a) 60°	1
Q19.	b) Both A and R are true but R is not the correct explanation for A.	1
Q20.	a) Both A and R are true and R is the correct explanation for A.	1
Section-B		
Q21.		$1 / 2$ $1 / 2$ 1 1 1 1
Q22.	Let the number of girls $=x$ Let the number of boys $=\mathrm{y}$ ATQ	

	$\begin{align*} & y=x+4 \ldots \tag{i}\\ & x+y=10 . \tag{ii} \end{align*}$ Using (i) into (ii) $\begin{aligned} & x+x+4=10 \\ & 2 x=6 \\ & x=3 \\ & \text { so } y=3+4=7 \end{aligned}$ $\text { So Girls }=3, \text { Boys }=7$	11/2 1 1/2		
Q23.	$\begin{aligned} & \text { Length of minute hand }=7 \mathrm{~cm} \\ & \text { Central angle in } 30 \text { minutes }=180^{\circ} \\ & \begin{aligned} \text { So area swept by minute hand }=\frac{\theta}{360} & \pi r^{2} \\ & =\frac{180^{\circ}}{360} \times \frac{22}{7} \times 7 \times 7 \\ & =77 \mathrm{~cm}^{2} \end{aligned} \end{aligned}$	1/2		
Q24.	In $\triangle \mathrm{ABC}, \mathrm{ML} \\| \mathrm{BC}$ So by BPT, $\frac{A M}{A B}=\frac{A L}{A C}$. In $\triangle \mathrm{ADC}, \mathrm{NL} \\| \mathrm{DC}$ So by BPT, $\frac{A N}{A D}=\frac{A L}{A C}$ From (i) and (ii) $\begin{equation*} \frac{A M}{A B}=\frac{A N}{A D} \tag{ii} \end{equation*}$ Or Length of the vertical pole $=6 \mathrm{~m}$ (Given) Length of the shadow of the pole $=4 \mathrm{~m}$ (Given) Let Height of tower $=\mathrm{hm}$ Length of shadow of the tower $=28 \mathrm{~m}$ (Given) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$, $\angle \mathrm{C}=\angle \mathrm{E}$ (angular elevation) $\angle \mathrm{B}=\angle \mathrm{F}=90^{\circ}$	1/2		

	$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}$ (By AA similarity criterion) $\therefore \frac{A B}{D F}=\frac{B C}{E F}$ (If two triangles are similar then their corresponding sides are proportional.) $\begin{aligned} & \therefore \frac{6}{h}=\frac{4}{28} \\ & \Rightarrow \mathrm{~h}=\frac{6 \times 28}{4} \\ & \Rightarrow \mathrm{~h}=6 \times 7 \\ & \Rightarrow \mathrm{~h}=42 \mathrm{~m} \end{aligned}$	1 1
Q25.	Let AP and BP be the two tangents to the circle with centre O . To Prove : AP = BP Proof: In $\triangle \mathrm{AOP}$ and $\triangle \mathrm{BOP}$ $\mathrm{OA}=\mathrm{OB}$ (radii of the same circle) $\angle \mathrm{OAP}=\angle \mathrm{OBP}=90^{\circ}$ (since tangent at any point of a circle is perpendicular to the radius through the point of contact) $\mathrm{OP}=\mathrm{OP}$ (common) $\therefore \triangle \mathrm{AOP} \cong \triangle \mathrm{BOP}$ (by R.H.S. congruence criterion) $\therefore \mathrm{AP}=\mathrm{BP}$ (corresponding parts of congruent triangles) Hence the length of the tangents drawn from an external point to a circle are equal.	1
	Section - C	
Q26.	Let the numerator $=\mathrm{x}$ and the denominator $=y$ So, the fraction $=\frac{x}{y}$ According to the question, Condition I: $\begin{align*} & \frac{x-1}{y}=\frac{1}{3} \\ & \Rightarrow 3(\mathrm{x}-1)=\mathrm{y} \\ & \Rightarrow 3 \mathrm{x}-3=\mathrm{y} \\ & \Rightarrow 3 \mathrm{x}-\mathrm{y}=3 . \tag{i} \end{align*}$ Condition II: $\begin{align*} & \frac{x}{y+8}=\frac{1}{4} \\ & \Rightarrow 4 x=y+8 \\ & \Rightarrow 4 x-y=8 \\ & \Rightarrow 4 x-y=8 \tag{ii} \end{align*}$ By using elimination method in equation (i) and (ii) $x=5 \text { and } y=12$	1

	Hence, the fraction is $\frac{5}{12}$. Or Let the speed of Milkha Singh is $\mathrm{xkm} / \mathrm{h}$. Let the time taken by him to cover certain distance is y hours. So distance cover by Milkha Singh is xy km. ATQ: Condition I: $\begin{align*} & (x+1)(y-1)=x y \\ & x y+y-x-1=x y \\ & -x+y=1 \ldots \ldots \ldots . \tag{i} \end{align*}$ Condition II: $\begin{aligned} & (x-2)(y+5)=x y \\ & x y-2 y+5 x-10=x y \end{aligned}$ $\begin{equation*} 5 x-2 y=10 \tag{ii} \end{equation*}$ From equation (i) and (ii) So $x=4 \mathrm{~km} / \mathrm{h}$ and $\mathrm{y}=5 \mathrm{~h}$ \Rightarrow Distance cover by Milkha Singh is 20 km	1
Q27.	Let $\mathrm{TR}=\mathrm{y}$ and $\mathrm{TP}=\mathrm{x}$ We know that the perpendicular drawn from the centre to the chord bisects it. $\therefore \mathrm{PR}=\mathrm{RQ}$ Now, $\mathrm{PR}+\mathrm{RQ}=8$ $\begin{aligned} & \Rightarrow \mathrm{PR}+\mathrm{PR}=8 \\ & \Rightarrow \mathrm{PR}=4 \end{aligned}$ Now, in right triangle POR By Using Pythagoras theorem, we have $\begin{aligned} & \mathrm{PO}^{2}=\mathrm{OR}^{2}+\mathrm{PR}^{2} \\ & \Rightarrow 5^{2}=\mathrm{OR}^{2}+(4)^{2} \\ & \Rightarrow \mathrm{OR}^{2}=9 \\ & \Rightarrow \mathrm{OR}=3 \end{aligned}$ Now, in right triangle TPR By Using Pythagoras theorem, we have $\begin{align*} & \mathrm{TP}^{2}=\mathrm{TR}^{2}+\mathrm{PR}^{2} \\ & \Rightarrow \mathrm{x}^{2}=\mathrm{y}^{2}+(4)^{2} \\ & \Rightarrow \mathrm{x}^{2}=\mathrm{y}^{2}+16 \ldots . \tag{i} \end{align*}$ Again, in right triangle TPO By Using Pythagoras theorem, we have $\begin{aligned} & \mathrm{TO}^{2}=\mathrm{TP}^{2}+\mathrm{PO}^{2} \\ & \Rightarrow(\mathrm{y}+3)^{2}=\mathrm{x}^{2}+5^{2} \\ & \Rightarrow \mathrm{y}^{2}+6 \mathrm{y}+9=\mathrm{x}^{2}+25 \end{aligned}$	1

	$\begin{gather*} \Rightarrow y^{2}+6 y=x^{2}+16 \ldots \ldots \ldots . .(\mathrm{ii}) \\ y^{2}+6 y=y^{2}+16+16 \text { (using (i)) } \\ 6 y=32 \\ y=\frac{3 z}{6}=\frac{16}{3} \ldots \ldots \ldots \ldots \ldots \ldots . . \text { (i } \tag{ii} \end{gather*}$ using $y=\frac{16}{3}$ in equation (i) $\begin{aligned} \mathrm{x}^{2} & =\left(\frac{16}{3}\right)^{2}+16 \\ & =16\left(\frac{16}{9}+1\right) \\ & =16\left(\frac{25}{9}\right) \\ \mathrm{x} & =\frac{20}{3}=6.67 \mathrm{~cm} \end{aligned}$	1
Q28.	To prove that $\sqrt{7}$ is an irrational number, we will use the contradiction method. Let us assume that $\sqrt{ } 7$ is a rational number with p and q as coprime integers and $q \neq 0$ $\Rightarrow \sqrt{ } 7=\mathrm{p} / \mathrm{q}$ On squaring both sides we get, $\Rightarrow 7 q^{2}=p^{2}$ $\Rightarrow \mathrm{p}^{2}$ is divisible by 7 . Therefore, p is also divisible by 7 . So we can assume that $\mathrm{p}=7 \mathrm{x}$ where x is an integer. By substituting this value of p in $7 \mathrm{q}^{2}=\mathrm{p}^{2}$, $\begin{aligned} & \Rightarrow 7 q^{2}=(7 x)^{2} \\ & \Rightarrow 7 q^{2}=49 x^{2} \\ & \Rightarrow q^{2}=7 x^{2} \end{aligned}$ $\Rightarrow q^{2}$ is divisible by 7 . Therefore, q is also divisible by 7 . Since p and q both are divisible by 7 , which gives contradiction that root 7 is a rational number in the form of p / q with " p and q both co-prime numbers" and $\mathrm{q} \neq 0$. Thus, $\sqrt{ } 7$ is an irrational number by the contradiction method. Now $5-3 \sqrt{7}$ is an irrational number because rational - irrational are always irrational. So $5-3 \sqrt{7}$ is an irrational number.	1/2 ${ }^{1 / 2}$
Q29.	The two digits numbers are $10,11,12, \ldots \ldots \ldots \ldots \ldots ., 99$. Total number of two digit numbers $=99-9=90$ (i) Multiples of 7 are $14,21,28,35,42,49,56,63,70,77,84,91$, 98. So total multiples of 7 are 13 $\begin{aligned} \mathrm{P}(\text { Multiples of } 10) & =\frac{\text { Number of favourable outcomes }}{\text { Total nuber out comes }} \\ & =\frac{13}{90} \end{aligned}$ (ii) Prefect cube numbers from 10 to 99 are 27 and 64.	1

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
So number of favourable outcomes \(=2\) \\
\(\mathrm{P}(\) two digits perfect square \()=\frac{z}{90}=\frac{1}{45}\) \\
(iii) Even numbers less than 25 are \(10,12,14,16,18,20,22\) and 24. \\
So number of favourable outcomes \(=8\) \\
\(\mathrm{P}(\) prime number less than 25\()=\frac{8}{90}=\frac{4}{45}\)
\end{tabular} \& 1

1

\hline Q30. \& | Let $4 x^{2}-4 x+1=0$ $\begin{gathered} \Rightarrow \quad 4 x^{2}-2 x-2 x+1=0 \\ 2 x(2 x-1)-1(2 x-1)=0 \\ (2 x-1)(2 x-1)=0 \end{gathered}$ |
| :--- |
| Either $2 \mathrm{x}-1=0$ or $2 \mathrm{x}-1=0$ $x=1 / 2 \text { or } x=1 / 2$ |
| Verification: $\begin{array}{crl} \text { Sum of zeroes }=-\mathrm{b} / \mathrm{a} & \text { RHS } & =\frac{-b}{a} \\ \text { LHS }=\text { Sum of zeroes }=\frac{1}{2}+\frac{1}{2} & & =-(- \\ & =1 & =1 \\ \text { Product of zeroes }=\frac{c}{a} & & \\ \text { LHS }=\text { Product of zeroes }=\frac{1}{2} \times \frac{1}{2} & \text { RHS } & =\frac{c}{a} \\ & =\frac{1}{4} & \\ =\frac{1}{4} \end{array}$ | \& 1

1
1
$1 / 2$

$1 / 2$

\hline Q31. \& | $\begin{aligned} & \frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta \\ & \text { L.H.S. }=\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta} \end{aligned}$ |
| :--- |
| We know that $\tan \theta=\frac{\sin \theta}{\cos \theta}$ $\cot \theta=\frac{\cos \theta}{\sin \theta}$ |
| Now, substitute it in the given equation, to convert it in a simplified form $\begin{aligned} & =[(\sin \theta / \cos \theta) / 1-(\cos \theta / \sin \theta)]+[(\cos \theta / \sin \theta) / 1-(\sin \theta / \cos \theta)] \\ & =[(\sin \theta / \cos \theta) /(\sin \theta-\cos \theta) / \sin \theta]+[(\cos \theta / \sin \theta) /(\cos \theta-\sin \theta) / \cos \theta] \\ & =\sin ^{2} \theta /[\cos \theta(\sin \theta-\cos \theta)]+\cos ^{2} \theta /[\sin \theta(\cos \theta-\sin \theta)] \\ & =\sin ^{2} \theta /[\cos \theta(\sin \theta-\cos \theta)]-\cos ^{2} \theta /[\sin \theta(\sin \theta-\cos \theta)] \\ & =1 /(\sin \theta-\cos \theta)\left[\left(\sin ^{2} \theta / \cos \theta\right)-\left(\cos ^{2} \theta / \sin \theta\right)\right] \\ & =1 /(\sin \theta-\cos \theta) \times\left[\left(\sin ^{3} \theta-\cos ^{3} \theta\right) / \sin \theta \cos \theta\right] \\ & =\left[(\sin \theta-\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cos \theta\right)\right] /[(\sin \theta-\cos \theta) \sin \theta \cos \theta] \\ & =(1+\sin \theta \cos \theta) / \sin \theta \cos \theta \end{aligned}$ | \& 1

1

\hline
\end{tabular}

	Similarly produce PM to N such that $\mathrm{PM}=\mathrm{MN}$, also Join RN. Proof: In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CDE}$, we have $\mathrm{AD}=\mathrm{DE}$ [By Construction] $\mathrm{BD}=\mathrm{DC}[\because \mathrm{AD}$ is the median $]$ And, $\angle \mathrm{ADB}=\angle \mathrm{CDE}$ [Vertically opposite angles] $\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{CED}$ [By SAS criterion of congruence] $\Rightarrow \mathrm{AB}=\mathrm{CE}[$ by CPCT$] \ldots . . .$. (i) Also, in $\triangle \mathrm{PQM}$ and $\triangle \mathrm{MNR}$, $\mathrm{PM}=\mathrm{MN}$ [By Construction] $\mathrm{QM}=\mathrm{MR}[\because \mathrm{PM}$ is the median] And, $\angle \mathrm{PMQ}=\angle \mathrm{NMR}$ [Vertically opposite angles] $\therefore \triangle \mathrm{PQM} \cong \triangle \mathrm{MNR}$ [By SAS criterion of congruence] $\Rightarrow \mathrm{PQ}=\mathrm{RN}$ [by CPCT] . \qquad Now $\frac{A B}{P Q}=\frac{A C}{P R}=\frac{A D}{P M}$. $\Rightarrow \frac{C E}{R N}=\frac{A C}{P R}=\frac{A D}{P M}$. [From(i) and(ii)] $\Rightarrow \frac{C E}{R N}=\frac{A C}{P R}=\frac{2 A D}{2 P M}$. $\Rightarrow \frac{C E}{R N}=\frac{A C}{P R}=\frac{A E}{P N} . \quad[\because 2 \mathrm{AD}=\mathrm{AE}$ and $2 \mathrm{PM}=\mathrm{PN}]$ $\therefore \triangle \mathrm{ACE} \sim \triangle \mathrm{PRN}$ [By SSS similarity criterion] Therefore, $\angle 2=\angle 4$ Similarly, $\angle 1=\angle 3$ $\therefore \angle 1+\angle 2=\angle 3+\angle 4$ $\Rightarrow \angle \mathrm{A}=\angle \mathrm{P}$...(iii) Now, in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$, we have $\begin{aligned} & \frac{A B}{P Q}=\frac{A C}{P R}(\text { Given }) \\ & \angle \mathrm{A}=\angle \mathrm{P}[\text { From(iii) }] \end{aligned}$ $\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ [By SAS similarity criterion]
Q33.	Frequency distribution table is $\mathrm{n}=230 \text { (given) }$ So, $150+\mathrm{x}+\mathrm{y}=230$ $\begin{equation*} x+y=80 \tag{i} \end{equation*}$ Median $=46$ so median class is $40-50$. So $\mathrm{l}=40, \mathrm{f}=65, \mathrm{~h}=10$ and $\mathrm{cf}=42+\mathrm{x}$ Also $\mathrm{n}=230$ so $\frac{n}{2}=\frac{23 \theta}{z}=115$. $\begin{aligned} \text { Median }= & 1+\left(\frac{\frac{n}{2}-(42+\mathrm{x})}{f}\right) \times h \\ 46 & =40+\left(\frac{115-42-\mathrm{x})}{65}\right) \times 10 \\ 6 & =\left(\frac{73-\mathrm{x})}{65}\right) \times 10 \\ 390 & =(73-\mathrm{x}) \times 10 \\ 39 & =73-\mathrm{x} \end{aligned}$

	Let $\mathrm{PA}=\mathrm{x}, \mathrm{PB}=\mathrm{y}$ Hence $\mathrm{x}-\mathrm{y}=7$ $\begin{equation*} \Rightarrow x=7+y . \tag{1} \end{equation*}$ In right triangle PAB $\mathrm{AB}^{2}=\mathrm{AP}^{2}-\mathrm{BP}^{2}(\text { By Pythagoras Theorem })$ Substituting the values we get $\begin{aligned} & 13^{2}=x^{2}-y^{2} \\ & 169=(7+y)^{2}+y^{2} \\ & 169=49+14 y+2 y^{2} \\ & 2 y^{2}+14 y-120=0 \end{aligned}$ Taking common from above equation we get $\begin{aligned} & y^{2}+7 y-60=0 \\ & y^{2}+12 y-5 y-60=0 \end{aligned}$ Taking common we get $\begin{aligned} & y(y+12)-5(y+12)=0 \\ & (y+12)(y-5)=0 \\ & y=5 \text { or } y=-12 \end{aligned}$ As y cannot be negative Therefore, $\mathrm{y}=5, \mathrm{x}=7+5=12$ Hence, $\mathrm{PA}=12 \mathrm{~m}$ and $\mathrm{PB}=5 \mathrm{~m}$	1
Q35.	Finding the radius and height of cone and cylinder Radius of the conical and cylindrical part $(\mathrm{r})=\frac{3}{2} \mathrm{~cm}$ Height of the cylindrical part $(\mathrm{H})=8 \mathrm{~cm}$ Height of the conical part (h) $=2 \mathrm{~cm}$ Step 2: Finding the volume of air in the model	1 1

	Volume of air in the model $=$ Volume of cylinder $+2 \times$ Volume of cone $\begin{aligned} \text { Volume of cylinder } & =\pi r^{2} \mathrm{H} \\ & =\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times 8 \end{aligned}$ $\begin{aligned} \text { Volume of cone } & =\frac{1}{3} \pi r^{2} \mathrm{~h} \\ & =\frac{1}{3} \times \frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times 2 \end{aligned}$ $\begin{aligned} \text { Volume of air } & =\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times 8+2 \times \frac{1}{3} \times \frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times 2 \\ & =\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times\left(8+2 \times \frac{1}{3} \times 2\right) \\ & =\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times\left(8+\frac{4}{3}\right) \\ & =\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times \frac{28}{3} \\ & =66 \mathrm{~cm}^{3} \end{aligned}$ Hence, the volume of air in the model is $66 \mathrm{~cm}^{3}$ Or Given: Height (h) of the cylindrical part $=2.1 \mathrm{~m}$ Diameter of the cylindrical part $=4 \mathrm{~m}$ Radius of the cylindrical part $=2 \mathrm{~m}$ Slant height (l) of conical part $=2.8 \mathrm{~m}$ Area of canvas used $=$ CSA of conical part + CSA of cylindrical part $\begin{aligned} & =\pi \mathrm{rl}+2 \pi \mathrm{rh} \\ & =\pi \times 2 \times 2.8+2 \pi \times 2 \times 2.1 \\ & =2 \pi[2.8+4.2] \\ & =2 \times \frac{22}{7} \times 7 \\ & =44 \mathrm{~m}^{2} \end{aligned}$ Cost of $1 \mathrm{~m}^{2}$ canvas $=500$ rupees Cost of $44 \mathrm{~m}^{2}$ canvas $=44 \times 500=22000$ rupees. Therefore, it will cost 22000 rupees for making such a tent.	
Section-E		
Q36.	(i) So AP from the given situation will be: $51,49,47$,. (ii) $\begin{aligned} & \mathrm{a}=51, \mathrm{~d}=49-51=-2, a_{n}=31 \\ & 31=51+(\mathrm{n}-1)(-2) \end{aligned}$	1

	$\text { (iii) } \begin{aligned} & 11=\mathrm{n} \\ & a_{n}=2 n+3, a_{n-1}=2(n-1)+3 \quad 2 \mathrm{x}, \text {, } \\ & \mathrm{d}=2 n+3-2 n+2-3=2 \\ & \\ & \mathrm{x}+10-2 \mathrm{x}=3 \mathrm{x}+2-\mathrm{x}-10 \\ & -\mathrm{x}+10=2 \mathrm{x}-8 \\ & 18=3 \mathrm{x} \\ & \mathrm{x}=6 \end{aligned}$	1 2
Q37.	In $\triangle \mathrm{ADC}$, In $\triangle \mathrm{BEC}$, $\begin{aligned} & \frac{A D}{D C}=\tan 30^{\circ} \\ & \frac{50}{D C}=\frac{1}{\sqrt{3}} \\ & D C=50 \sqrt{3} \mathrm{~m} \\ & \frac{A D}{A C}=\sin 30^{\circ} \\ & \frac{50}{A C}=\frac{1}{2} \\ & A C=100 \mathrm{~m} \end{aligned}$ In $\triangle \mathrm{ABC}, \angle \mathrm{ACB}=90^{\circ}$ $\begin{aligned} \mathrm{AB}^{2}= & \mathrm{AC}^{2}+\mathrm{BC}^{2} \\ = & (100)^{2}+(40 \sqrt{3})^{2} \\ & =10000+4800 \\ & =14800 \\ \mathrm{AB} & =\sqrt{14800} \\ \mathrm{AB} & =20 \sqrt{37} \end{aligned}$ (i) $\mathrm{CD}=50 \sqrt{3} \mathrm{~m}$ (ii) $\mathrm{CE}=20 \sqrt{3} \mathrm{~m}$ (iii) Distance from kite $\mathrm{A}=100 \mathrm{~m}$, Distance from kite $\mathrm{B}=40 \sqrt{3}$ Or $\mathrm{AB}=20 \sqrt{37} \mathrm{~m}$	1 1 2
Q38.	Coordinates from the given figure are: $\mathrm{A}(3,0), \mathrm{B}(5,0), \mathrm{C}(7,2), \mathrm{D}(7,3)$, $\mathrm{E}(5,5), \mathrm{F}(3,5), \mathrm{G}(1,3)$ and $\mathrm{H}(1,2)$. (i) Abscissas of point B - Abscissas of point $\mathrm{F}=5-3=2$ (ii) Ordinates of point E - Ordinates of point $\mathrm{H}=5-2=3$ (iii) $\quad \mathrm{GD}=\sqrt{(7-1)^{2}+(3-3)^{2}}$	1

$$
\begin{aligned}
& =\sqrt{(6)^{2}+(0)^{2}}=6 \\
\mathrm{AF} & =\sqrt{(3-3)^{2}+(5-0)^{2}} \\
& =\sqrt{(0)^{2}+(5-0)^{2}}=5
\end{aligned}
$$

Difference of distance GD and distance FA $=6-5=1$

$$
\begin{aligned}
\mathrm{GC} & =\sqrt{(7-1)^{2}+(2-3)^{2}} \\
& =\sqrt{(6)^{2}+(-1)^{2}}=\sqrt{36+1}=\sqrt{37}
\end{aligned}
$$

