

Г

Subject – Mathematics Basic(241)

Class - X

Answer Key for Set – A Marking scheme

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$Q7.$ b)12.5 1 $Q8.$ d) $\Delta PQR \sim \Delta NSM$ 1 $Q9$ a)10 1 $Q10.$ c) 15° 1 $Q11.$ a)0 1 $Q12.$ b) 60° 1 $Q13.$ c) 75° 1 $Q14.$ c)4 1 $Q15.$ a)10 1 $Q14.$ c)4 1 $Q16.$ c)550 cm ² 1 $Q17.$ c) 30 – 40 1 $Q18.$ b) 17.5 1 $Q19.$ a) Both A and R are true and R is the correct explanation for A. 1 $Q20.$ c) A is true but R is false. 1				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Q17. c) 30 - 40 1 Q18. b) 17.5 1 Q19. a) Both A and R are true and R is the correct explanation for A. 1 Q20. c) A is true but R is false. 1				
Q17. c) 30 - 40 1 Q18. b) 17.5 1 Q19. a) Both A and R are true and R is the correct explanation for A. 1 Q20. c) A is true but R is false. 1				
Q19.a) Both A and R are true and R is the correct explanation for A.1Q20.c) A is true but R is false.1				
Q20.c) A is true but R is false.1				
Section – B				
Q21. $2x + 3y = 7$				
(k-1)x + (k+2)y = 3k				
So for infinite many solutions				
$\frac{a_1}{a_1} = \frac{b_1}{a_1} = \frac{c_1}{a_1} \tag{1}$				
$\begin{bmatrix} \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \\ 2 & 3 & 7 \end{bmatrix} $ 1				
$\frac{1}{1-1} = \frac{3}{1-2} = \frac{7}{21}$				
$\frac{\frac{2}{k-1} = \frac{3}{k+2} = \frac{7}{3k}}{\Rightarrow \frac{2}{k-1} = \frac{3}{k+2}}$				
$\Rightarrow \frac{1}{k-1} = \frac{1}{k+2}$				
$\Rightarrow 2k + 4 = 3k - 3$				
$\Rightarrow k = 7$ 1				
Hence the value of k is 7.				

Q23.		
	Triangles PAO and PBO can be proved congruent using RHS criterion. Thus, $\angle APO = \angle BPO$ (CPCT) Given that $\angle APB = 120^{\circ}$ $\angle APB = \angle APO + \angle BPO = 2\angle APO = \angle 120^{\circ}$	
	$\angle APO = 60^{\circ}$ In triangle APO $\cos 60^{\circ} = \frac{1}{2} = \frac{AP}{PO}$ Thus, $OP = 2AP$	1
	Hence Proved	1
Q24.	$\sin (A + B) = 1$ $\sin (A + B) = \sin 90^{\circ}$ $\Rightarrow A + B = 90^{\circ}(i)$ $\cos(A - B) = \frac{\sqrt{3}}{2}$	1⁄2
	so $\cos(A - B) = \cos 30^{\circ}$ $\Rightarrow A - B = 30^{\circ}$ (ii) From (i) and (ii) $A = 60^{\circ}$ and $B = 30^{\circ}$	¹ / ₂ 1
	Or	
	$\cos A + \cos^2 A = 1$ $\Rightarrow \cos A = 1 - \cos^2 A$ $\Rightarrow \cos A = \sin^2 A \dots $	1
	$= \cos A + \cos^2 A$ (By using (i))	1
Q25.	= 1 Length of minute hand = 7 cm Central angle in 30 minutes = 180°	1/2
	So area swept by minute hand = $\frac{\theta}{360} \pi r^2$ = $\frac{180^\circ}{360} \times \frac{22}{7} \times 7 \times 7$ = 77 cm^2	¹ / ₂
	Section – C	

Q26.	To prove that $\sqrt{2}$ is an irrational number, we will use the contradiction method.				
	Let us assume that $\sqrt{2}$ is a rational number with p and q as coprime integers and $q \neq 0$	1⁄2			
	$\Rightarrow \sqrt{2} = p/q$				
	On squaring both sides we get,				
	$\Rightarrow 2q^2 = p^2$	1⁄2			
	\Rightarrow p ² is divisible by 2. Therefore, p is also divisible by 2.				
	So we can assume that $p = 2x$ where x is an integer.	1/2			
	By substituting this value of p in $2q^2 = p^2$,	/2			
	$\Rightarrow 2q^2 = (2x)^2$				
	$\Rightarrow 2q^2 = 4x^2$				
	$\Rightarrow q^2 = 2x^2$	1/2			
	\Rightarrow q ² is divisible by 2. Therefore, q is also divisible by 2.				
	Since p and q both are divisible by 2, which gives contradiction that root 2 is a rational number in the form of p/q with "p and q both co-prime numbers" and $q \neq 0$.				
	Thus, $\sqrt{2}$ is an irrational number by the contradiction method. Now $6 + \sqrt{2}$ is an irrational number because rational + irrational are always irrational. So $6 + \sqrt{2}$ is an irrational number.				
Q27.	Let $25x^2 - 15x + 2 = 0$ $\Rightarrow 25x^2 - 10x - 5x + 2 = 0$ 5x(5x - 2) - 1(5x - 2) = 0				
	5x(5x-2) = 1(5x-2) = 0 (5x - 2)(5x - 1) = 0 Either 5x - 2 = 0 or 5x - 1 = 0	1			
	x = 2/5 or $x = 1/5$	1			
	Verification: Sum of zeroes = - b/a RHS = $\frac{-b}{-b}$				
	Sum of zeroes = - b/a LHS = Sum of zeroes = $\frac{2}{5} + \frac{1}{5}$ RHS = $\frac{-b}{a}$ = $-(\frac{-15}{25})$	1⁄2			
	$=\frac{3}{5} = \frac{3}{5}$ Product of zeroes $=\frac{c}{a}$ LHS = Product of zeroes $=\frac{2}{5} \times \frac{1}{5}$ RHS $=\frac{c}{5}$				
	Product of zeroes $=\frac{c}{a}$				
	LHS = Product of zeroes $=\frac{2}{5} \times \frac{1}{5}$ RHS $=\frac{c}{a}$ $=\frac{2}{25}$ $=\frac{2}{25}$	1⁄2			

Q28.	Let the numerator $= x$	
	and the denominator $=$ y	
	So, the fraction $=\frac{x}{y}$	
	According to the question,	
	Condition I:	
	$\frac{x-1}{y} = \frac{1}{3}$	
	\Rightarrow 3(x-1) = y	
	$\Rightarrow 3x - 3 = y$	1
	$\Rightarrow 3x - y = 3 \dots (i)$	
	Condition II:	
	$\frac{x}{y+8} = \frac{1}{4}$	
	$\Rightarrow 4x = y + 8$	
	$\Rightarrow 4x - y = 8$	1
	$\Rightarrow 4x - y = 8$ (ii)	
	By using elimination method in equation (i) and (ii)	
	x = 5 and $y = 12$	1
	Hence, the fraction is $\frac{5}{12}$.	
	Or	
	Let the speed of Milkha Singh is x km/h.	
	Let the time taken by him to cover certain distance is y hours.	
	So distance cover by Milkha Singh is xy km.	
	ATQ:	
	Condition I:	1
	(x+1)(y-1) = xy	
	xy + y - x - 1 = xy	
	-x + y = 1(i)	
	Condition II:	1
	(x-2)(y+5) = xy	
	xy - 2y + 5x - 10 = xy	
	5x - 2y = 10(ii) From equation (i) and (ii)	
	So $x = 4 \text{ km/ h}$ and $y = 5 \text{ h}$	1
	\Rightarrow Distance cover by Milkha Singh is 20 km	

Q29.	$\frac{\tan\theta}{1-\cot\theta} + \frac{\cot\theta}{1-\tan\theta} = 1 + \sec\theta \csc\theta$	
	$L.H.S. = \frac{\tan\theta}{1 - \cot\theta} + \frac{\cot\theta}{1 - \tan\theta}$	
	We know that $\tan \theta = \frac{\sin \theta}{\cos \theta}$	
	$\cot \theta = \frac{\cos \theta}{\sin \theta}$	
	Now, substitute it in the given equation, to convert it in a simplified form	
	$= [(\sin \theta / \cos \theta) / 1 - (\cos \theta / \sin \theta)] + [(\cos \theta / \sin \theta) / 1 - (\sin \theta / \cos \theta)]$	1
	$= [(\sin\theta/\cos\theta)/(\sin\theta-\cos\theta)/\sin\theta] + [(\cos\theta/\sin\theta)/(\cos\theta-\sin\theta)/\cos\theta]$	
	$= \sin^2\theta / [\cos\theta(\sin\theta - \cos\theta)] + \cos^2\theta / [\sin\theta(\cos\theta - \sin\theta)]$	
	$= \sin^2\theta / [\cos\theta(\sin\theta - \cos\theta)] - \cos^2\theta / [\sin\theta(\sin\theta - \cos\theta)]$	
	$= 1/(\sin\theta - \cos\theta) \left[(\sin^2\theta/\cos\theta) - (\cos^2\theta/\sin\theta) \right]$	
	$= 1/(\sin\theta - \cos\theta) \times [(\sin^3\theta - \cos^3\theta)/\sin\theta\cos\theta]$	1
	= $[(\sin\theta - \cos\theta)(\sin^2\theta + \cos^2\theta + \sin\theta\cos\theta)]/[(\sin\theta - \cos\theta)\sin\theta\cos\theta]$	
	$= (1 + \sin\theta\cos\theta) / \sin\theta\cos\theta$	
	$= 1/\sin\theta\cos\theta + 1$	1
	$= 1 + \sec \theta \csc \theta = $ R.H.S.	
	Therefore, L.H.S. = R.H.S. Or	
	$(\cos A + \sin A + 1)/(\cos A - \sin A + 1)$ Divide the numerator and denominator by $\cos A$, we get	
	$= (\cos A + \sin A + 1)/\cos A/(\cos A - \sin A + 1)/\cos A$	1
	We know that $\sin A/\cos A = \tan A$ and $1/\cos A = \sec A$	
	$= (1 + \tan A + \sec A)/(1 - \tan A + \sec A)$	

$$= ((\sec^2 A - \tan^2 A) + \tan A + \sec A)/(1 - \tan A + \sec A)$$

$$= ((\sec A - \tan A) (\sec A + \tan A) + (\tan A + \sec A))/(1 - \tan A + \sec A)$$

$$= ((\sec A + \tan A) (\sec A - \tan A + 1))/(1 - \tan A + \sec A)$$

$$= (\sec A + \tan A$$

$$= 1/\cos A + \sin A/\cos A$$

$$= (1 + \sin A)/\cos A = RHS.$$
Therefore, $\frac{1 + \cos \theta + \sin \theta}{1 + \cos \theta - \sin \theta} = \frac{1 + \sin \theta}{\cos \theta}.$
Hence Proved
$$\boxed{Q30.}$$

$$\underbrace{v}_{y}$$

	$TO^2 = TP^2 + PO^2$				
	$\Rightarrow (y+6)^2 = x^2 + 10^2$				
	$\Rightarrow y^2 + 12y + 36 = x^2 + 100$				
	\Rightarrow y ² + 12y = x ² + 64(ii)				
	$-y^2 + 12y = y^2 + 64 + 64$				
	12y = 128				
	$y = \frac{128}{12} = \frac{32}{3}$ (ii)				
	using $y = \frac{32}{3}$ in equation (i)				
	5				
	$x^2 = \left(\frac{32}{3}\right)^2 + 64$				
	$= 64(\frac{16}{9}+1)$				
	$= 64(\frac{25}{9})$				
	$x = \frac{40}{3} = 13.34$ cm	1			
	5				
Q31.	The two digits numbers are 10, 11, 12,, 99.				
	Total number of two digit numbers $= 99 - 9 = 90$				
	(i) Multiples of 10 are 10, 20, 30, 40, 50, 60, 70, 80, 90.				
	So total multiples of 10 is 9 Number of favourable outcomes				
	$P(Multiples of 10) = \frac{Total nuber out comes}{Total nuber out comes}$				
	P(Multiples of 10) = $\frac{Number of favourable outcomes}{Total nuber out comes}$ = $\frac{9}{90} = \frac{1}{10}$				
	(ii) Prefect square numbers from 10 to 99 are 16, 25, 36, 49, 64 and				
	81.				
	So number of favourable outcomes $= 6$				
	P(two digits perfect square) = $\frac{6}{90} = \frac{1}{15}$				
	(iii) Prime numbers less than 25 are 11, 13, 17, 19 and 23.				
	So number of favourable outcomes = 5				
	P(prime number less than 25) = $\frac{5}{90} = \frac{1}{18}$	1			
	Section – D				
Q32.	Let the original average speed of train be x km/h.				
	Time taken by train to cover 63 km with original speed = $\frac{63}{x}$				
	Time taken by train to cover 72 km with increased speed = $\frac{72}{x+6}$				
	x+6	1			
	It is given that ;				
	$\frac{63}{x} + \frac{72}{x+6} = 3$				
	$\frac{x + x + 6}{63(x+6) + 72x} = 3$				
	$\frac{\frac{63x+378+72x}{x(x+6)}}{x(x+6)} = 3$	1			
	$135x + 378 = 3(x^2 + 6x)$				
	$135x + 378 = 3x^2 + 18x$				
	$3x^2 - 117x - 378 = 0$				
	$x^2 - 39x - 126 = 0$	1			

	$169 = 49 + 14y + 2y^2$	1
	$2y^2 + 14y - 120 = 0$	1
	Taking common from above equation we get	
	$y^2 + 7y - 60 = 0$	
	$y^2 + 12y - 5y - 60 = 0$	
	Taking common we get	
	y(y + 12) - 5(y + 12) = 0	
	(y + 12) (y - 5) = 0	1
	y = 5 or y = -12	
	As y cannot be negative	
	Therefore, $y = 5$, $x = 7 + 5 = 12$	
	Hence, $PA = 12 \text{ m}$ and $PB = 5 \text{ m}$	
Q33.	D B C	1/2
	Given: In $\triangle ABC$, $DE BC$	1/2 1/2
	To prove: $\frac{AD}{DB} = \frac{AE}{EC}$ Construction : Draw EM⊥AB and DN⊥AC. Join B to E and C to D.	1/2
	Proof: In $\triangle ADE$ and $\triangle BDE$ ar($\triangle ADE$) $\frac{1}{2} \times AD \times ME$ AD (i)	1
	$\frac{\operatorname{ar}(\Delta ADE)}{\operatorname{ar}(\Delta BDE)} = \frac{\frac{1}{2} \times AD \times ME}{\frac{1}{2} \times BD \times ME} = \frac{AD}{BD}(i)$	1
	[Area of $\Delta = \frac{1}{2} \times \text{base} \times \text{corresponding altitude}]$ In ΔADE and ΔCDE	
	$\frac{\operatorname{ar}(\Delta ADE)}{\operatorname{ar}(\Delta CDE)} = \frac{\frac{1}{2} \times AE \times DN}{\frac{1}{2} \times CE \times DN} = \frac{AE}{EC} \dots \dots \dots \dots \dots (ii)$	1
	Since, DE BC [Given]	

	Height (h) of the cylindrical part = 2.1 m				
	Height (h) of the cylindrical part = 2.1 m Diameter of the cylindrical part = 4 m				
	Radius of the cylindrical part $= 2 \text{ m}$				
	Slant height (1) of conical part = 2.8 m				
	Area of canvas used	= CSA of conical part	+ CSA of cylindrica	l part	
	=π	$trl + 2\pi rh$			
	= π	$x \times 2 \times 2.8 + 2 \pi \times 2 \times$	2.1		
		2π [2.8 + 4.2]			
	= 2	$2 \times \frac{22}{7} \times 7$			1
	=4	4 m^2			1
	Cost of 1 m^2 canvas				1
		$s = 44 \times 500 = 22000 \text{ t}$	unees		2
			-		1
	Therefore, it will cost 22000 rupees for making such a tent.				
Q35.					
	Frequency(f) Class Mark (x) fx				
	Class Class Mark (x)				
	0 - 20 5 10 50 20 - 40 f1 30 30f1				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	60 - 80 f2 70 70f2				
	80 - 100 7 90 630				
	100 - 120 8 110 880				
	Total $30 + f1 + f2$ $2060 + 30f1 + 70 f2$				
	Given $30+f1+f2 = 50$				
					1
	$\Rightarrow f1 + f2 = 20(i)$ Given, Mean = $\frac{\sum fx}{\sum f}$ =62.8				
	$\Rightarrow \frac{2060+30f1+70f2}{30+f1+f2} = 62.8$				
	$\Rightarrow 2060 + 30f1 + 70f2 = 1884 + 62.8f1 + 62.8f2$				1
	$\Rightarrow 32.8f1 - 7.2f2 = 176$				
	$\Rightarrow 8.2f1 - 1.8f2 = 44$				
	$\Rightarrow 4.1f1 - 0.9f2 = 22$				
	$\Rightarrow 41f1 - 9f2 = 220 - (ii)$				
	Solving both equations 1, 2, we get				
	f1 = 8, f2 = 12				
					1

		Section – E	
Q36.	Coordinates from the given figure are: A(3, 0), B(5, 0), C(7, 2), D(7, 3), E(5, 5), F(3, 5), G(1, 3) and H(1, 2).		
	(i) (ii) (iii)	Abscissas of point B – Abscissas of point F = 5 – 3 = 2 Ordinates of point E – Ordinates of point H = 5 – 2 = 3 $GD = \sqrt{(7-1)^2 + (3-3)^2}$ $= \sqrt{(6)^2 + (0)^2} = 6$	1 1
		$AF = \sqrt{(3-3)^2 + (5-0)^2} = \sqrt{(0)^2 + (5-0)^2} = 5$ Difference of distance GD and distance FA = 6 - 5 = 1	2
		Or $GC = \sqrt{(7-1)^2 + (2-3)^2}$ $= \sqrt{(6)^2 + (-1)^2} = \sqrt{36+1} = \sqrt{37}$	
Q37.	(i) (ii)	So AP from the given situation will be: 51, 49, 47, a = 51, d = 49 - 51 = -2, $a_n = 31$ 31 = 51 + (n - 1)(-2)	1
	(iii)	11 = n $a_n = 2n + 3$, $a_{n-1} = 2(n - 1) + 3$ 2x, , d = 2n + 3 - 2n + 2 - 3 = 2	1 2
		Or x + 10 - 2x = 3x + 2 - x - 10 -x + 10 = 2x - 8 18 = 3x x = 6	
Q38.	(i) (ii) (iii)	y = 300 m x = 173.2 m QR = 300 + 173.2 = 473.2 m	1 1 2
		PR = 346.2 m	