Subject -Mathematics Basic(241)
Class - X
Answer Key for Set - A
Marking scheme

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Marking scheme} \\
\hline \multicolumn{3}{|l|}{Section - A} \\
\hline Q1. \& c) \(x^{2} y^{2}\) \& 1 \\
\hline Q2. \& a)2 \& 1 \\
\hline Q3. \& b) \(2 / 3\) \& 1 \\
\hline Q4. \& d)(0, -3) \& 1 \\
\hline Q5. \& a)2 \& 1 \\
\hline Q6. \& d) \(1 / 6\) \& 1 \\
\hline Q7. \& b) 12.5 \& 1 \\
\hline Q8. \& d) \(\triangle \mathrm{PQR} \sim \Delta \mathrm{NSM}\) \& 1 \\
\hline Q9 \& a) 10 \& 1 \\
\hline Q10. \& c) \(15^{\circ}\) \& 1 \\
\hline Q11. \& a) 0 \& 1 \\
\hline Q12. \& b) \(60^{\circ}\) \& 1 \\
\hline Q13. \& c) \(75^{\circ}\) \& 1 \\
\hline Q14. \& c) 4 \& 1 \\
\hline Q15. \& a)10 \& 1 \\
\hline Q16. \& c) \(550 \mathrm{~cm}^{2}\) \& 1 \\
\hline Q17. \& c) \(30-40\) \& 1 \\
\hline Q18. \& b) 17.5 \& 1 \\
\hline Q19. \& a) Both A and R are true and R is the correct explanation for A. \& 1 \\
\hline Q20. \& c) A is true but R is false. \& 1 \\
\hline \multicolumn{3}{|c|}{Section - B} \\
\hline Q21. \& \begin{tabular}{l}
\[
\begin{aligned}
\& 2 \mathrm{x}+3 \mathrm{y}=7 \\
\& (\mathrm{k}-1) \mathrm{x}+(\mathrm{k}+2) \mathrm{y}=3 \mathrm{k}
\end{aligned}
\] \\
So for infinite many solutions
\[
\begin{aligned}
\& \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
\& \frac{2}{k-1}=\frac{3}{k+2}=\frac{7}{3 k} \\
\& \Rightarrow \frac{2}{k-1}=\frac{3}{k+2} \\
\& \Rightarrow 2 \mathrm{k}+4=3 \mathrm{k}-3 \\
\& \Rightarrow \mathrm{k}=7
\end{aligned}
\] \\
Hence the value of \(k\) is 7 .
\end{tabular} \& 1

1 \\
\hline
\end{tabular}

Q22.	In $\triangle \mathrm{ABC}, \mathrm{ML} \\| \mathrm{BC}$ So by BPT, $\frac{A M}{A B}=\frac{A L}{A C}$ In $\triangle \mathrm{ADC}, \mathrm{NL} \\| \mathrm{DC}$ So by BPT, $\frac{A N}{A D}=\frac{A L}{A C}$ From (i) and (ii) $\begin{equation*} \frac{A M}{A B}=\frac{A N}{A D} \tag{ii} \end{equation*}$ Or Length of the vertical pole $=6 \mathrm{~m}$ (Given) Length of the shadow of the pole $=4 \mathrm{~m}$ (Given) Let Height of tower $=\mathrm{hm}$ Length of shadow of the tower $=28 \mathrm{~m}$ (Given) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$, $\angle \mathrm{C}=\angle \mathrm{E}$ (angular elevation) $\angle \mathrm{B}=\angle \mathrm{F}=90^{\circ}$ $\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}$ (By AA similarity criterion) $\therefore \frac{A B}{D F}=\frac{B C}{E F}$ (If two triangles are similar then their corresponding sides are proportional.) $\begin{aligned} & \therefore \frac{6}{h}=\frac{4}{28} \\ & \Rightarrow \mathrm{~h}=\frac{6 \times 28}{4} \\ & \Rightarrow \mathrm{~h}=6 \times 7 \\ & \Rightarrow \mathrm{~h}=42 \mathrm{~m} \end{aligned}$

\begin{tabular}{|c|c|c|}
\hline Q23. \& \begin{tabular}{l}
Triangles PAO and PBO can be proved congruent using RHS criterion. \\
Thus, \(\angle \mathrm{APO}=\angle \mathrm{BPO}(\mathrm{CPCT})\) \\
Given that \(\angle \mathrm{APB}=120^{\circ}\)
\[
\angle \mathrm{APB}=\angle \mathrm{APO}+\angle \mathrm{BPO}=2 \angle \mathrm{APO}=\angle 120^{\circ}
\] \\
\(\angle \mathrm{APO}=60^{\circ}\) \\
In triangle APO \\
\(\cos 60^{\circ}=\frac{1}{2}=\frac{A P}{P O}\) \\
Thus, \(\mathrm{OP}=2 \mathrm{AP}\) \\
Hence Proved
\end{tabular} \& 1
1 \\
\hline Q24. \& \& \(1 / 2\)
\(1 / 2\)
1

$1 / 2$ \\

\hline Q25. \& $$
\begin{aligned}
& \text { Length of minute hand }=7 \mathrm{~cm} \\
& \text { Central angle in } 30 \text { minutes }=180^{\circ} \\
& \begin{aligned}
& \text { So area swept by minute hand }=\frac{\theta}{360} \pi r^{2} \\
&=\frac{180^{\circ}}{360} \times \frac{22}{7} \times 7 \times 7 \\
&=77 \mathrm{~cm}^{2}
\end{aligned}
\end{aligned}
$$ \& $1 / 2$

$1 / 2$

1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Q26. \& \begin{tabular}{l}
To prove that \(\sqrt{2}\) is an irrational number, we will use the contradiction method. \\
Let us assume that \(\sqrt{ } 2\) is a rational number with \(p\) and \(q\) as coprime integers and \(q \neq 0\)
\[
\Rightarrow \sqrt{ } 2=\mathrm{p} / \mathrm{q}
\] \\
On squaring both sides we get,
\[
\Rightarrow 2 q^{2}=p^{2}
\] \\
\(\Rightarrow \mathrm{p}^{2}\) is divisible by 2 . Therefore, p is also divisible by 2 . \\
So we can assume that \(\mathrm{p}=2 \mathrm{x}\) where x is an integer. \\
By substituting this value of \(p\) in \(2 q^{2}=p^{2}\),
\[
\begin{aligned}
\& \Rightarrow 2 \mathrm{q}^{2}=(2 \mathrm{x})^{2} \\
\& \Rightarrow 2 \mathrm{q}^{2}=4 \mathrm{x}^{2} \\
\& \Rightarrow \mathrm{q}^{2}=2 \mathrm{x}^{2}
\end{aligned}
\] \\
\(\Rightarrow q^{2}\) is divisible by 2 . Therefore, \(q\) is also divisible by 2 . \\
Since p and q both are divisible by 2 , which gives contradiction that root 2 is a rational number in the form of \(\mathrm{p} / \mathrm{q}\) with " p and q both co-prime numbers" and \(\mathrm{q} \neq 0\). \\
Thus, \(\sqrt{ } 2\) is an irrational number by the contradiction method. \\
Now \(6+\sqrt{2}\) is an irrational number because rational + irrational are always irrational. So \(6+\sqrt{2}\) is an irrational number.
\end{tabular} \& 1/2 \\
\hline Q27. \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { Let } 25 x^{2}-15 x+2=0 \\
\& \Rightarrow \quad 25 x^{2}-10 x-5 x+2=0 \\
\& \quad 5 x(5 x-2)-1(5 x-2)=0 \\
\& \quad(5 x-2)(5 x-1)=0
\end{aligned}
\] \\
Either \(5 \mathrm{x}-2=0\) or \(5 \mathrm{x}-1=0\)
\[
x=2 / 5 \text { or } x=1 / 5
\] \\
Verification:
\[
\begin{array}{rlrl}
\text { Sum of zeroes }=-\mathrm{b} / \mathrm{a} \& \text { RHS } \& =\frac{-b}{a} \\
\text { LHS }=\text { Sum of zeroes }=\frac{2}{5}+\frac{1}{5} \& \& =-\left(\frac{-15}{25}\right) \\
\& =\frac{3}{5} \& \& =\frac{3}{5}
\end{array}
\] \\
Product of zeroes \(=\frac{c}{a}\)
\[
\begin{aligned}
\text { LHS }=\text { Product of zeroes } \& =\frac{2}{5} \times \frac{1}{5} \& \text { RHS } \& =\frac{c}{a} \\
\& =\frac{2}{25} \& \& =\frac{2}{25}
\end{aligned}
\]
\end{tabular} \& 1
1
1
\(1 / 2\)

$1 / 2$ \\
\hline
\end{tabular}

Q28.		
	Let the numerator $=\mathrm{x}$	
	and the denominator $=\mathrm{y}$	
	So, the fraction $=\frac{x}{y}$	
	According to the question,	
	Condition I: $\frac{x-1}{y}=\frac{1}{3}$	
	$\Rightarrow 3(\mathrm{x}-1)=\mathrm{y}$	
	$\Rightarrow 3 \mathrm{x}-3=\mathrm{y}$	1
	$\begin{equation*} \Rightarrow 3 x-y=3 \tag{i} \end{equation*}$	
	Condition II: $\frac{x}{y+8}=\frac{1}{4}$	
	$\Rightarrow 4 \mathrm{x}=\mathrm{y}+8$	
	$\Rightarrow 4 \mathrm{x}-\mathrm{y}=8$	1
	$\Rightarrow 4 x-y=8 \ldots \ldots(i i)$	
	By using elimination method in equation (i) and (ii)	
	$x=5 \text { and } y=12$	1
	Hence, the fraction is $\frac{5}{12}$.	
	Or	
	Let the speed of Milkha Singh is $\mathrm{x} \mathrm{km} / \mathrm{h}$.	
	Let the time taken by him to cover certain distance is y hours.	
	So distance cover by Milkha Singh is xy km.	
	ATQ:	
	Condition I:	1
	$(x+1)(y-1)=x y$	
	$x y+y-x-1=x y$	
	$-x+y=1 \ldots \ldots \ldots \ldots \ldots \ldots . .(1)$	
	Condition II:	1
	$(x-2)(y+5)=x y$	
	$x y-2 y+5 x-10=x y$	
	$5 x-2 y=10 \ldots \ldots \ldots \ldots \ldots . .$. (ii)	
	From equation (i) and (ii)	
	So $x=4 \mathrm{~km} / \mathrm{h}$ and $\mathrm{y}=5 \mathrm{~h}$	1

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& =\left(\left(\sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}\right)+\tan \mathrm{A}+\sec \mathrm{A}\right) /(1-\tan \mathrm{A}+\sec \mathrm{A}) \\
\& =((\sec \mathrm{A}-\tan \mathrm{A})(\sec \mathrm{A}+\tan \mathrm{A})+(\tan \mathrm{A}+\sec \mathrm{A})) /(1-\tan \mathrm{A}+\sec \mathrm{A}) \\
\& =(\sec \mathrm{A}+\tan \mathrm{A})(\sec \mathrm{A} \tan \mathrm{~A}+1)) /(1-\tan \mathrm{A}+\sec \mathrm{A}) \\
\& =\sec \mathrm{A}+\tan \mathrm{A} \\
\& =1 / \cos \mathrm{A}+\sin \mathrm{A} / \cos \mathrm{A} \\
\& =(1+\sin \mathrm{A}) / \cos \mathrm{A}=\text { R.H.S. }
\end{aligned}
\] \\
Therefore, \(\frac{1+\cos \theta+\sin \theta}{1+\cos \theta-\sin \theta}=\frac{1+\sin \theta}{\cos \theta}\). \\
Hence Proved
\end{tabular} \& 1 \\
\hline Q30. \& \begin{tabular}{l}
Let \(\mathrm{TR}=\mathrm{y}\) and \(\mathrm{TP}=\mathrm{x}\) \\
We know that the perpendicular drawn from the centre to the chord bisects it.
\[
\therefore \mathrm{PR}=\mathrm{RQ}
\] \\
Now, \(\mathrm{PR}+\mathrm{RQ}=16\)
\[
\begin{aligned}
\& \Rightarrow \mathrm{PR}+\mathrm{PR}=16 \\
\& \Rightarrow \mathrm{PR}=8
\end{aligned}
\] \\
Now, in right triangle POR \\
By Using Pythagoras theorem, we have
\[
\begin{aligned}
\& \mathrm{PO}^{2}=\mathrm{OR}^{2}+\mathrm{PR}^{2} \\
\& \Rightarrow 10^{2}=\mathrm{OR}^{2}+(8)^{2} \\
\& \Rightarrow \mathrm{OR}^{2}=36 \\
\& \Rightarrow \mathrm{OR}=6
\end{aligned}
\] \\
Now, in right triangle TPR \\
By Using Pythagoras theorem, we have
\[
\begin{align*}
\& \mathrm{TP}^{2}=\mathrm{TR}^{2}+\mathrm{PR}^{2} \\
\& \Rightarrow \mathrm{x}^{2}=\mathrm{y}^{2}+(8)^{2} \\
\& \Rightarrow \mathrm{x}^{2}=\mathrm{y}^{2}+64 \ldots \tag{i}
\end{align*}
\] \\
Again, in right triangle TPO \\
By Using Pythagoras theorem, we have
\end{tabular} \& 1

1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \[
\begin{align*}
\& \mathrm{TO}^{2}=\mathrm{TP}^{2}+\mathrm{PO}^{2} \\
\& \Rightarrow(\mathrm{y}+6)^{2}=\mathrm{x}^{2}+10^{2} \\
\& \Rightarrow \mathrm{y}^{2}+12 \mathrm{y}+36=\mathrm{x}^{2}+100 \\
\& \Rightarrow \mathrm{y}^{2}+12 \mathrm{y}=\mathrm{x}^{2}+64 \ldots \ldots . . . \tag{ii}\\
\& \mathrm{y}^{2}+12 \mathrm{y}=\mathrm{y}^{2}+64+64 \\
\& 12 \mathrm{y}=128 \\
\& \quad \mathrm{y}=\frac{128}{12}=\frac{32}{3} \ldots \ldots \ldots \ldots . \tag{ii}\\
\& \text { using } y=\frac{32}{3} \text { in equation (i) }
\end{align*}
\]
\[
\begin{aligned}
x^{2} \& =\left(\frac{32}{3}\right)^{2}+64 \\
\& =64\left(\frac{16}{9}+1\right) \\
\& =64\left(\frac{25}{9}\right) \\
x \& =\frac{40}{3}=13.34 \mathrm{~cm}
\end{aligned}
\] \& 1 \\
\hline Q31. \& \begin{tabular}{l}
The two digits numbers are \(10,11,12, \ldots \ldots \ldots \ldots \ldots, 99\). Total number of two digit numbers \(=99-9=90\) \\
(i) Multiples of 10 are 10, 20, 30, 40, 50, 60, 70, 80, 90. \\
So total multiples of 10 is 9
\[
\begin{aligned}
\mathrm{P}(\text { Multiples of } 10) \& =\frac{\text { Number of favourable outcomes }}{\text { Total nuber out comes }} \\
\& =\frac{9}{90}=\frac{1}{10}
\end{aligned}
\] \\
(ii) Prefect square numbers from 10 to 99 are 16, 25, 36, 49, 64 and 81. \\
So number of favourable outcomes \(=6\) \\
\(\mathrm{P}(\) two digits perfect square \()=\frac{6}{90}=\frac{1}{15}\) \\
(iii) Prime numbers less than 25 are 11, 13, 17, 19 and 23. \\
So number of favourable outcomes \(=5\) \\
\(\mathrm{P}(\) prime number less than 25\()=\frac{5}{90}=\frac{1}{18}\)
\end{tabular} \& 1

1

1 \\
\hline \& Section - D \& \\

\hline Q32. \& | Let the original average speed of train be $\mathrm{x} \mathrm{km} / \mathrm{h}$. |
| :--- |
| Time taken by train to cover 63 km with original speed $=\frac{63}{x}$ |
| Time taken by train to cover 72 km with increased speed $=\frac{72}{x+6}$ |
| It is given that ; $\begin{aligned} & \frac{63}{x}+\frac{72}{x+6}=3 \\ & \frac{63(x+6)+72 x}{x+6)}=3 \\ & \frac{63 x+378+72 x}{x(x+6)}=3 \\ & 135 x+378=3\left(x^{2}+6 \mathrm{x}\right) \\ & 135 \mathrm{x}+378=3 \mathrm{x}^{2}+18 \mathrm{x} \\ & 3 \mathrm{x}^{2}-117 \mathrm{x}-378=0 \\ & \mathrm{x}^{2}-39 \mathrm{x}-126=0 \end{aligned}$ | \& 1

1
1
1

1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& 169=49+14 y+2 y^{2} \\
\& 2 y^{2}+14 y-120=0
\end{aligned}
\] \\
Taking common from above equation we get
\[
\begin{aligned}
\& y^{2}+7 y-60=0 \\
\& y^{2}+12 y-5 y-60=0
\end{aligned}
\] \\
Taking common we get
\[
\begin{aligned}
\& y(y+12)-5(y+12)=0 \\
\& (y+12)(y-5)=0 \\
\& y=5 \text { or } y=-12
\end{aligned}
\] \\
As y cannot be negative \\
Therefore, \(\mathrm{y}=5, \mathrm{x}=7+5=12\) \\
Hence, \(\mathrm{PA}=12 \mathrm{~m}\) and \(\mathrm{PB}=5 \mathrm{~m}\)
\end{tabular} \& 1

1 \\

\hline Q33. \& | Given: In $\triangle \mathrm{ABC}, \mathrm{DE} \mid \mathrm{BC}$ |
| :--- |
| To prove: $\frac{A D}{D B}=\frac{A E}{E C}$ |
| Construction : Draw EM $\perp \mathrm{AB}$ and $\mathrm{DN} \perp \mathrm{AC}$. Join B to E and C to D . |
| Proof: In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{BDE}$ |
| $\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{BDE})}=\frac{\frac{1}{2} \times \mathrm{AD} \times \mathrm{ME}}{\frac{1}{2} \times \mathbf{B D} \times \mathrm{ME}}=\frac{\mathrm{AD}}{\mathrm{BD}}$. |
| [Area of $\Delta=\frac{1}{2} \times$ base \times corresponding altitude] |
| In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{CDE}$ |
| $\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{CDE})}=\frac{\frac{1}{2} \times \mathbf{A E} \times \mathbf{D N}}{\frac{1}{2} \times \mathbf{C E} \times \mathbf{D N}}=\frac{\mathrm{AE}}{\mathrm{EC}}$. |
| Since, $\mathrm{DE}\|\mid \mathrm{BC}$ [Given] | \& $1 / 2$

$11 / 2$
112
$1 / 2$
1
1 \\
\hline
\end{tabular}

	$\therefore \quad \operatorname{ar}(\triangle \mathrm{BDE})=\operatorname{ar}(\triangle \mathrm{CDE}) \ldots \text { (iii) }$ [$\Delta \mathrm{s}$ on the same base and between the same parallel sides are equal in area] From eq. (i), (ii) and (iii) $\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AE}}{\mathrm{EC}}$	1
Q34.	Finding the radius and height of cone and cylinder Radius of the conical and cylindrical part $(\mathrm{r})=\frac{3}{2} \mathrm{~cm}$ Height of the cylindrical part $(\mathrm{H})=8 \mathrm{~cm}$ Height of the conical part (h) $=2 \mathrm{~cm}$ Step 2: Finding the volume of air in the model Volume of air in the model=Volume of cylinder $+2 \times$ Volume of cone $\begin{aligned} \text { Volume of cylinder } & =\pi r^{2} \mathrm{H} \\ & =\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times 8 \end{aligned}$ $\begin{aligned} \text { Volume of cone } & =\frac{1}{3} \pi r^{2} \mathrm{~h} \\ & =\frac{1}{3} \times \frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times 2 \end{aligned}$ Volume of air $=\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times 8+2 \times \frac{1}{3} \times \frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times 2$ $\begin{aligned} & =\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times\left(8+2 \times \frac{1}{3} \times 2\right) \\ & =\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times\left(8+\frac{4}{3}\right) \\ & =\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times \frac{28}{3} \\ & =66 \mathrm{~cm}^{3} \end{aligned}$ Hence, the volume of air in the model is $66 \mathrm{~cm}^{3}$ Or Given:	1 1 1 1 1 1 1 1

	Height (h) of the cylindrical part $=2.1 \mathrm{~m}$ Diameter of the cylindrical part $=4 \mathrm{~m}$ Radius of the cylindrical part $=2 \mathrm{~m}$ Slant height (l) of conical part $=2.8 \mathrm{~m}$ Area of canvas used $=$ CSA of conical part + CSA of cylindrical part $\begin{aligned} & =\pi \mathrm{rl}+2 \pi \mathrm{rh} \\ & =\pi \times 2 \times 2.8+2 \pi \times 2 \times 2.1 \\ & =2 \pi[2.8+4.2] \\ & =2 \times \frac{22}{7} \times 7 \\ & =44 \mathrm{~m}^{2} \end{aligned}$ Cost of $1 \mathrm{~m}^{2}$ canvas $=500$ rupees Cost of $44 \mathrm{~m}^{2}$ canvas $=44 \times 500=22000$ rupees. Therefore, it will cost 22000 rupees for making such a tent.	1 1 2 1
Q35.	Class Frequency(f) Class Mark (x) fx $0-20$ 5 10 50 $20-40$ f 1 30 30 f 1 $40-60$ 10 50 500 $60-80$ f 2 70 70 f 2 $80-100$ 7 90 630 $100-120$ 8 110 880 Total $30+\mathrm{f} 1+\mathrm{f} 2$ $2060+30 \mathrm{f} 1+$ 70 f 2 Given $30+\mathrm{f} 1+\mathrm{f} 2=50$ $\Rightarrow \mathrm{f} 1+\mathrm{f} 2=20-\text { (i) }$ Given, Mean $=\frac{\sum f x}{\sum f}=62.8$ $\begin{aligned} & \Rightarrow \frac{2060+30 \mathrm{f} 1+7 \mathrm{ff} 2}{30+\mathrm{f} 1+\mathrm{f} 2}=62.8 \\ & \Rightarrow 2060+30 \mathrm{f} 1+70 \mathrm{f} 2=1884+62.8 \mathrm{f} 1+62.8 \mathrm{f} 2 \\ & \Rightarrow \quad 32.8 \mathrm{f} 1-7.2 \mathrm{f} 2=176 \\ & \Rightarrow \quad 8.2 \mathrm{f} 1-1.8 \mathrm{f} 2=44 \\ & \Rightarrow 4.1 \mathrm{f} 1-0.9 \mathrm{f} 2=22 \\ & \Rightarrow 41 \mathrm{f} 1-9 \mathrm{f} 2=220-- \text { (ii) } \end{aligned}$ Solving both equations 1,2 , we get $\mathrm{f} 1=8, \mathrm{f} 2=12$	2 1 1 1 1

Section-E

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{\multirow[b]{2}{*}{Section-E}} \\
\hline \& \& \\
\hline Q36. \& \begin{tabular}{l}
Coordinates from the given figure are: \(\mathrm{A}(3,0), \mathrm{B}(5,0), \mathrm{C}(7,2), \mathrm{D}(7,3)\), \(E(5,5), F(3,5), G(1,3)\) and \(H(1,2)\). \\
(i) Abscissas of point B - Abscissas of point \(\mathrm{F}=5-3=2\) \\
(ii) Ordinates of point E - Ordinates of point \(\mathrm{H}=5-2=3\) \\
(iii)
\[
\begin{aligned}
\mathrm{GD} \& =\sqrt{(7-1)^{2}+(3-3)^{2}} \\
\& =\sqrt{(6)^{2}+(0)^{2}}=6 \\
\mathrm{AF} \& =\sqrt{(3-3)^{2}+(5-0)^{2}} \\
\& =\sqrt{(0)^{2}+(5-0)^{2}}=5
\end{aligned}
\] \\
Difference of distance GD and distance FA \(=6-5=1\) Or
\[
\begin{aligned}
\mathrm{GC} \& =\sqrt{(7-1)^{2}+(2-3)^{2}} \\
\& =\sqrt{(6)^{2}+(-1)^{2}}=\sqrt{36+1}=\sqrt{37}
\end{aligned}
\]
\end{tabular} \& 1
1

2

\hline Q37. \& | (i) \quad So AP from the given situation will be: $51,49,47$, \qquad |
| :--- |
| (ii) $\begin{aligned} & \mathrm{a}=51, \mathrm{~d}=49-51=-2, a_{n}=31 \\ & 31=51+(\mathrm{n}-1)(-2) \\ & 11=\mathrm{n} \end{aligned}$ |
| (iii) $\begin{gathered} a_{n}=2 n+3, a_{n-1}=2(n-1)+3 \quad 2 \mathrm{x}, \text {, } \\ \mathrm{d}=2 n+3-2 n+2-3=2 \\ \mathrm{Or} \\ \mathrm{x}+10-2 \mathrm{x}=3 \mathrm{x}+2-\mathrm{x}-10 \\ -\mathrm{x}+10=2 \mathrm{x}-8 \\ 18=3 \mathrm{x} \\ \mathrm{x}=6 \end{gathered}$ | \& 1

1
2

\hline Q38. \& | (i) $\mathrm{y}=300 \mathrm{~m}$ |
| :--- |
| (ii) $\mathrm{x}=173.2 \mathrm{~m}$ |
| (iii) $\mathrm{QR}=300+173.2=473.2 \mathrm{~m}$ $\mathrm{PR}=346.2 \mathrm{~m}$ | \& 1

1
2

\hline
\end{tabular}

