PRE BOARD EXAMINATION (2023-24)

CLASS XII CHEMISTRY

MARKING SCHEME (SET-B)

1.	c) Methyl isocyanide	1
2.	a) phospho diester linkage	1
3.	d) Quadruple	1
4.	d) $i)=(C), (ii)=(A), (iii)=(D), (iv)=(B)$	1
5.	b) $CH_2(CN) - CH_2(CN)$	1
6.	a) NaHSO ₃	1
7.	d) Ethyl magnesium bromide	1
8.	b) Butan-2-one	1
9.	c) Propanone and 2-Methylpropan-2-ol	1
10.	d) Anacl	1
11.	d) (n - 1) d ⁵ ns ²	1
12.	b) C ₆ H ₅ OH, NaOH and CH ₃ I	1
13.	(b) Both A and R are true but R is not the correct explanation of A.	1
14.	(d) A is false but R is true.	1
15.	(c) A is true but R is false.	1
16.	(a) Both A and R are true and R is the correct explanation of A	1
17.	a) A= CH ₃ -CH=CH ₂	2
	b) B= CH ₃ -CH(Br)-CH ₃	
	c) C=CH ₃ -CH(I)-CH ₃	
	d) D=CH ₃ -CH(MgI)-CH ₃	
18.	a) Due to resonance one NH ₂ group undergoes or involved in resonance and hence can't participate in the formation of semicarhazone. Long pair of NH ₂ group is not involved in resonance and is available for nucleophillic attack. b) This is due to the lone pairs on oxygen atom attached to hydrogen atom in the - COOH group are involved in resonance and hence making the carbon atom less electrophilic. Hence, carboxylic acids do not give the reaction of carbonyl groups. OR a) Butanone <propanone<propanal <ethanal<="" td=""><td>2</td></propanone<propanal>	2
	b) 4-methoxy benzoic acid < benzoic acid < 4-nitrobenzoic acid < 3, 4-dinitrobenzoic acid	
19.	The elevation in boiling point be different if 0.1 mole of sodium chloride or 0.1 mole of sugar is dissolved in 1 L of water. Sugar is non electrolyte and it do not dissociate in aqueous solution. NaCl is a strong electrolyte and completely	1

	dissociates to give sodium ions and chloride ions. Hence, the number of particles	
	produced by 0.1 mole of sodium chloride and 0.1 mole of sugar will be different.	
		1
20	Hence, the elevation in boiling point be different.	1
20.	$2NH_3 \rightarrow N_2 + 3H_2$	1/
	r = k[NH3]0	1/2
	r=2.5 x 10 ⁻⁴ molL ⁻¹ s ⁻¹	1/2
	$r = \frac{d[N2]}{dt} = \frac{d[H2]}{3 dt} = -\frac{1 d[NH3]}{2 dt}$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	rate of production of $N_2 = \frac{d [N2]}{dt} = 2.5 \times 10^{-4} \text{ molL}^{-1}\text{s}^{-1}$	
	rate of production of H ₂ = $\frac{d [H2]}{dt}$ =3 X 2.5 x 10 ⁻⁴ =7.5 X 10 ⁻⁴ molL ⁻¹ s ⁻¹	1/2
	dt	
21.	A-Sucrose (C ₁₂ H ₂₂ O ₁₁)	1/2
	The mixture of D-(+)- glucose and D-(-)-Fructose is known as invert sugar.	1/2
	The linkage which holds the two monosaccharide units through oxygen atom is	
	called glycosidic linkage.	1
	catted gtycostate timage.	•
20		
22.	i) $[Fe(en)_2Cl_2]$ Cl or x + 0 + 2 (-1) + (-1) = 0	3
	x + (-3) = 0 or x = +3	
	∴ Oxidation number of iron, x = + 3	
	ii) The complex has two bidentate ligands and two monodentate ligands.	
	Therefore, the coordination number is 6.	
	iii) In the complex ${}_{26}\text{Fe}^{3+} = 3\text{d}^5 \text{ 4s}^0 \text{ 4p}^0$	
	Due to presence of one unpaired electrons in d orbitals the complex is	
	paramagnetic.	
	iv) The number of geometrical isomers are two.	
	(v) [Fe(en) ₂ Cl ₂] Cl, only cis-isomer shows optical isomerism.	
	vi) Dichlorido bis (ethane-1, 2- diamine) Iron (III) chloride.	
23.	a) Electron pairs of Cl atom are in conjugation with n electrons of the benzene ring	2
25.	so C-Cl bond in chlorobenzene	3
	acquires some double bond character while C-Cl bond in cyclohexyl chloride is a	
	pure single bond.C - Cl bond in chlorobenzene is shorter than in cyclohexyl	
	chloride. Since dipole moment is a product of charge and distance, so	
	chlorobenzene has lower dipole moment than cyclohexyl chloride.	
	(b) Alkyl halides are polar molecules, therefore, their molecules are held together	
	by dipole-dipole attraction. The molecules of H_2O are held together by H-bonds.	
	Since the new forces of attraction between water and alkyl halide molecules are	
	weaker than the forces of attraction already existing between alkyl halide- alkyl	
	halide molecules and water- water molecules, therefore, alkyl halides are	
	immiscible with water.	
	(c) Grignard's reagents are very reactive. They react with alcohol, water, amines	
	1 C / S in the large and the first time, the state of the	

	etc. to form corresponding hydrocarbon.	
	$R-MgX + HOH \rightarrow RH + Mg(OH)X$	
	Therefore, Grignard's reagents must be prepared under anhydrous conditions.	
24.	a) Hell-Volhard-Zelinsky reaction: Carboxylic acid reacts with chlorine or bromine in presence of small quantities of red phosphorous to give exclusively α -chloro or α -bromo acids. $CH_3COOH \xrightarrow{CI2,Red\ Phosphorous} Cl\ CH_2COOH$	3
	(b) (i) Acetophenone and Benzophenone: They can be distinguished by iodoform test which is given by only acetophenone with the formation of yellow ppt. while benzophenone does not respond to iodoform test (any other) CO CH ₃ COONa	
	+ 3NaOI	
	Acetophenone Sod. benzoate (ii) Phenol and Benzoic acid: On addition of NaHCO ₃ to both solutions carbon dioxide gas is evolved with benzoic acid while phenol does not form CO ₂ (any other) COO Na	
	$+$ NaHCO ₃ \longrightarrow $+$ H ₂ O + CO ₂ \uparrow	
	OR PART	
	Molecular formula : C₄H ₈ O I) A=CH ₃ -CH ₂ -CH ₀ B= CH ₃ - C - CH ₂ - CH ₃	
	O	
	C= CH ₃ -CH-CHO	
	CH ₃ D=CH ₃ -CH ₂ -CH ₃	
	(with explanation) ii) B= CH ₃ - C - CH ₂ - CH ₃	
	(with explanation)	
25.	(with explanation)i) Vitamin A causes night blindness.	3
۷۶.	(ii) Uracil is found in nucleotide of RNA only.	
	Page 3 of 7]

	(iii) It suggests the open structure of glucose	
26.	As Fe + $2H^+ \rightarrow Fe^{2+} + H_2$ (n = 2)	1/2
	According to Nernst equation	1/2
	$_{\rm F}$ 0.0591 ₁ [Fe ²⁺]	1/2
	$E_{\text{cell}} = E_{\text{cell}}^0 - \frac{0.0591}{2} \log \frac{[\text{Fe}^{2+}]}{[\text{H}^{+2}]^2}$	1/2
	$\Rightarrow E_{\text{cell}} = 0.44 - \frac{0.0591}{2} \log \frac{10^{-3}}{1^2}$	1/2
	-	1/2
	$E_{\text{cell}} = 0.44 - \frac{0.0591}{2} \times (-3)$	
	= 0.44 + 0.0887 = 0.529 V	
27.	k ₁ =0.693/20	1/2
	$k_2 = 0.693/5$	1/2
	$log k_2/k_1 = Ea/ 2.303 \times R (1/T_1-1/T_2)$	1/2
	log(4)= Ea /2.303×8.314 (1/300-1/350)	1/2
	Ea=24.2 kJ mol ⁻¹	1
28.	I) CH ₃ CH ₂ CH ₂ OH → CH ₃ CH ₂ COOH	1
	Propan - I - ol Propanoic Acid	
	(II)	
	OH OH OH	
	Br ₂ in CS ₂ + + + + + + + + + + + + + + + + + + +	
	Phenol $\frac{1}{br}$ ρ - bromophenol ρ - Bromophenol ρ (Minor)	
	(III)	
	OH OH OH OH	1
	O = Nitrophenol $P = Nitrophenol$	
	OH ONA ONA	1
	CHCl ₃ + aq. NaOH CHCl ₂ NaOH CHO	
	Intermediate QH	1
	СНО	
	Salicylaldehyde	
29.	a) [Co(NH ₃) ₅ Cl]Cl ₂	1
	b) $[Fe(C_2 O_4)_3]^{3-}$, bidentate ligand $(1/2 + 1/2)$	1/2
	c) When ligand approaches a transition metal ion, the d- orbitals split into two	1/2
	sets, one with lower energy and the other with higher energy. The difference of	1
	energy between the two sets of orbitals is know as crystal field splitting energy.	1
	i) $t_{2g}4 e_g0$ ii) $t_{2g}3 e_g1$	
		2
	OR	
	c) $[Co(CN)_6]^{3-}$ because wavelength is less energy will be more ,splitting will be	
	[c] [Co(CN) ₆] ³ because wavelength is less energy will be more ,splitting will be	

	more.	
30.	a) K ⁺ / K > Mg ²⁺ /Mg > Cr ³⁺ /Cr> Hg ²⁺ /Hg > Ag ⁺ / Ag b) It is an electrode whose potential is arbitrarily taken as zero or is exactly known. Standard Hydrogen Electrode (SHE). (any other words)	1
	c) When an electrode is in contact with the solution of its ions in a half cell, it has a tendancy to loose or gain electrons which are known as electrode potential. pH=10	1/2
	pH=-log[H ⁺] [H ⁺]=10 ⁻¹⁰ M	1/2
	$2H^+ + e \rightarrow H_2(g)$ $E cell = E^0 - \frac{0.0591}{n} log \frac{\{P\}}{\{R\}}$	1/2
	E cell = $0.0 - \frac{0.0591}{2} \log \frac{\{1\}}{\{10-10\}}$ E cell = $0.591V$	1/2
	OR c) Element with higher oxidation potential than Fe will oxidise faster than iron preventing corrosion in iron. Oxidation potential of Fe =0.44 V Oxidation potential of A = 2.37 V Oxidation potential of B = 0.14 V	2
21	As A has higher oxidation potential than iron, it can be used for coating the surface of iron.	5
31.	a) This is because energy is required to remove one electron from Cu^+ to Cu^{2+} , high hydration energy of Cu^{2+} compensates for it. Therefore, Cu^+ ion in an aqueous solution is unstable. b) Actinides exhibit larger oxidation states than lanthanides, because of the very small energy gap between 5f, 6d and 7s subshells. Thus, the outermost electrons get easily excited to the higher energy levels, giving variable oxidation states. c) Cr^{2+} is reducing agent as its configuration changes from d4 to d3, when it is oxidized to Cr^{3+} . The d³ configuration have a half-filled t_{2g} level which is very stable. d) V^{3+} , Cu^{2+} due to unpaired electrons. e) $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2^- + 2H_2O$	5
	f) Zr and Hf have almost identical radii due to lanthanoid contraction which is due to weak shielding of d-electrons. g) The ability of O ₂ to stabilize higher oxidation states exceeds that of fluorine because oxygen can form multiple bonds with metals.	

32.	A=Aniline C ₆ H ₅ NH ₂	1/2
	B= Anilinium chloride C ₆ H ₅ NH ₃ ⁺ Cl ⁻ C= Benzene isonitrile C ₆ H ₅ NC	1/2 1/2
	D= N-Phenylbenzenesulphonamide C ₆ H ₅ NHSO ₂ C ₆ H ₅ NH ₂	1/2
	E= Benzene Diazonium chloride C ₆ H ₅ N ₂ Cl	1/2
	F= p-Hydroxyazobenzene (Orange Dye)	1/2
	O-N=N-O-OH	
	b) $C_6H_5NH_2 + CHCl_3 + KOH \rightarrow C_6H_5NC + 3KCl + 3H_2O$	1
	(A) (C)	
	$C_6H_5NH_2 \xrightarrow{NaNO2+HCl,ice\ cold\ water} C_6H_5N_2Cl$	
	(A) (E)	1
	\bigcirc -N=N-Cl+ \bigcirc -OH \rightarrow \bigcirc - N=N- \bigcirc -OH	
	(E) (F)	
	OR	2
	A) i) C ₆ H ₅ NH ₂ < C ₆ H ₅ N(CH ₃) ₂ < CH ₃ NH ₂ < (C ₂ H ₅) ₂ NH ii) p-nitroaniline< Aniline< p-toluidine	2
	ii) p-introaintine< Aintine< p-totulune	
	B) i) Ethylamine is soluble in water due to its capability to form H-bonds with water while aniline is insoluble in water due to larger hydrocarbon part which	1
	tends to retard the formation of H-bonds.	
	ii) Due to presence of two H-atoms on N-atom of primary amines, they undergo	
	extensive intermolecular H-bonding while tertiary amines due to the absence of a	1
	H-atom on the N-atom, do not undergo H- bonding. As a result, primary amines	
	have higher boiling points than 3° amines. **ROH,Br2************************************	1
	C) CH_3COOH \longrightarrow CH_3CONH_2 \longrightarrow CH_3NH_2	<u> </u>
33.	i) Stronger	1/2
	ii) Negative deviation	1/2
	iii) -ive	1/2
	v) A mixture of acetone and choloroform (or any other)	½ ½ ½
	vi) Maximum boiling azeotrope	1/2
	1	

	B) $\Delta Tf = i \times \frac{Kf \times Wb \times 1000}{Wa \times Mb}$	1/2
	$CaCl_2$ is an electrolyte which dissociated as $CaCl_2 \rightarrow Ca^{2+} + 2Cl^{-}$	1/2
	i=3	1/2
	$\Delta T_f = 3 \times \frac{1.86 \times 3 \times 1000}{100 \times 111}$ $\Delta T_f = 1.5$	
	Δ 1 f=1.5	1/2
	Freezing point =273- 1.5= 271.5 K or -1.5 $^{\circ}$ C	
	<u>OR</u>	
	$\overline{A)}$ W (mass) of cane-sugar = 5% means 5 g	1/2
	Molar mass of cane-sugar (M) = 342 g mol-1 Mass of isotonic substance X	
	= 0.877% means 0.877 g	1
	$C_1RT = C_2RT$ 5/342 = 0.866 / M M=59.2 \approx 60 gmol ⁻¹	1
	B) K _H =1.67X10 ⁸ Pa	1
	P co2=2.53 x10 ⁵ Pa	1
	$Pco_2 = K_H X \times CO_2$	
	$X_{CO2} = 2.53 \times 10^5 \text{ pa} / 1.67 \times 10^8 \text{ pa}$	
	$X_{CO2}=1.5 \times 10^{-3}$	1
	$n_{CO2}/n_{H2O} + n_{CO2} = 1.5 \times 10^{-3}$	
	No.of moles of water present in 500 ml 55.5/2=27.7	
	nCO ₂ = 1.5X 27.7= 41.55 millimoles	
1		1 1