PRE BOARD EXAMINATION (2023-24)

CLASS XII CHEMISTRY

MARKING SCHEME (SET-B)

1.	c) Methyl isocyanide	1
2.	a) phospho diester linkage	1
3.	d) Quadruple	1
4.	d) i$)=(\mathrm{C})$, (ii)=(A), (iii)=(D$)$, (iv)=(B$)$	1
5.	b) $\mathrm{CH}_{2}(\mathrm{CN})-\mathrm{CH}_{2}(\mathrm{CN})$	1
6.	a) NaHSO_{3}	1
7.	d) Ethyl magnesium bromide	1
8.	b) Butan-2-one	1
9.	c) Propanone and 2-Methylpropan-2-ol	1
10.	d) $\Lambda_{\text {Nacl }}^{\circ}$	1
11.	d) $(\mathrm{n}-1) \mathrm{d}^{5} \mathrm{~s}^{2}$	1
12.	b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}, \mathrm{NaOH}$ and $\mathrm{CH}_{3} \mathrm{I}$	1
13.	(b) Both A and R are true but R is not the correct explanation of A .	1
14.	(d) A is false but R is true.	1
15.	(c) A is true but R is false.	1
16.	(a) Both A and R are true and R is the correct explanation of A	1
17.	a) $\mathrm{A}=\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$ b) $\mathrm{B}=\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{Br})-\mathrm{CH}_{3}$ c) $\mathrm{C}=\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{I})-\mathrm{CH}_{3}$ d) $\mathrm{D}=\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{Mgl})-\mathrm{CH}_{3}$	2
18.	a) Due to resonance one NH_{2} group undergoes or involved in resonance and hence can't participate in the formation of semicarhazone. Long pair of NH_{2} group is not involved in resonance and is available for nucleophillic attack. b) This is due to the lone pairs on oxygen atom attached to hydrogen atom in the COOH group are involved in resonance and hence making the carbon atom less electrophilic. Hence, carboxylic acids do not give the reaction of carbonyl groups. OR a) Butanone <Propanone<Propanal <Ethanal b) 4-methoxy benzoic acid < benzoic acid <4-nitrobenzoic acid < 3, 4dinitrobenzoic acid	2
19.	The elevation in boiling point be different if 0.1 mole of sodium chloride or 0.1 mole of sugar is dissolved in 1 L of water. Sugar is non electrolyte and it do not dissociate in aqueous solution. NaCl is a strong electrolyte and completely	1

	dissociates to give sodium ions and chloride ions. Hence, the number of particles produced by 0.1 mole of sodium chloride and 0.1 mole of sugar will be different. Hence, the elevation in boiling point be different.	1
20.	$\begin{aligned} & 2 \mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2} \\ & \mathrm{r}=\mathrm{k}\left[\mathrm{NH}_{3}\right]^{0} \\ & \mathrm{r}=2.5 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1} \\ & \mathrm{r}=\frac{d[\mathrm{~N} 2]}{d t}=\frac{d[\mathrm{H} 2]}{3 d t}=-\frac{1 d[\mathrm{NH} 3]}{2 d t} \\ & \text { rate of production of } \mathrm{N}_{2}=\frac{d[\mathrm{~N} 2]}{d t}=2.5 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1} \\ & \text { rate of production of } \mathrm{H}_{2}=\frac{d[\mathrm{H} 2]}{d t}=3 \times 2.5 \times 10^{-4}=7.5 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$
21.	A-Sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ The mixture of $\mathrm{D}-(+)$ - glucose and $\mathrm{D}-(-)$-Fructose is known as invert sugar. The linkage which holds the two monosaccharide units through oxygen atom is called glycosidic linkage.	$1 / 2$ $1 / 2$ 1
22.	$\begin{aligned} & \text { i) }\left[\mathrm{Fe}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl} \text { or } \mathrm{x}+0+2(-1)+(-1)=0 \\ & \mathrm{x}+(-3)=0 \text { or } \mathrm{x}=+3 \end{aligned}$ \therefore Oxidation number of iron, $\mathrm{x}=+3$ ii) The complex has two bidentate ligands and two monodentate ligands. Therefore, the coordination number is 6 . iii) In the complex ${ }_{26} \mathrm{Fe}^{3+}=3 \mathrm{~d}^{5} 4 \mathrm{~s}^{0} 4 \mathrm{p}^{0}$ Due to presence of one unpaired electrons in d orbitals the complex is paramagnetic. iv) The number of geometrical isomers are two. (v) $\left[\mathrm{Fe}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$, only cis-isomer shows optical isomerism. vi) Dichlorido bis (ethane-1, 2- diamine) Iron (III) chloride.	3
23.	a) Electron pairs of Cl atom are in conjugation with n electrons of the benzene ring so $\mathrm{C}-\mathrm{Cl}$ bond in chlorobenzene acquires some double bond character while C-Cl bond in cyclohexyl chloride is a pure single bond.C - Cl bond in chlorobenzene is shorter than in cyclohexyl chloride. Since dipole moment is a product of charge and distance, so chlorobenzene has lower dipole moment than cyclohexyl chloride. (b) Alkyl halides are polar molecules, therefore, their molecules are held together by dipole-dipole attraction. The molecules of $\mathrm{H}_{2} \mathrm{O}$ are held together by H -bonds. Since the new forces of attraction between water and alkyl halide molecules are weaker than the forces of attraction already existing between alkyl halide- alkyl halide molecules and water- water molecules, therefore, alkyl halides are immiscible with water. (c) Grignard's reagents are very reactive. They react with alcohol, water, amines	3

	etc. to form corresponding hydrocarbon. $\mathrm{R}-\mathrm{MgX}+\mathrm{HOH} \rightarrow \mathrm{RH}+\mathrm{Mg}(\mathrm{OH}) \mathrm{X}$ Therefore, Grignard's reagents must be prepared under anhydrous conditions.	
24.	a) Hell-Volhard-Zelinsky reaction : Carboxylic acid reacts with chlorine or bromine in presence of small quantities of red phosphorous to give exclusively a-chloro or a-bromo acids. $\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\text { CI2,Red Phosphorous }} \quad \mathrm{Cl} \mathrm{CH}_{2} \mathrm{COOH}$ (b) (i) Acetophenone and Benzophenone: They can be distinguished by iodoform test which is given by only acetophenone with the formation of yellow ppt. while benzophenone does not respond to iodoform test (any other) (ii) Phenol and Benzoic acid: On addition of NaHCO_{3} to both solutions carbon dioxide gas is evolved with benzoic acid while phenol does not form CO_{2} (any other)	3
	OR PART Molecular formula : $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ l) $\mathrm{A}=\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CHO}$ $\mathrm{D}=\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ (with explanation) ii) (with explanation)	
25.	i) Vitamin A causes night blindness. (ii) Uracil is found in nucleotide of RNA only.	3

\begin{tabular}{|c|c|c|}
\hline \& (iii) It suggests the open structure of glucose.. \& \\
\hline 26. \& As \(\mathrm{Fe}+2 \mathrm{H}^{+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{H}_{2}(\mathrm{n}=2)\) According to Nernst equation
\[
\begin{aligned}
\& E_{\text {cell }}=E_{\text {cell }}^{0}-\frac{0.0591}{2} \log \frac{\left[\mathrm{Fe} \mathrm{e}^{2+}\right]}{\left[\mathrm{H}^{+2}\right]^{2}} \\
\& \Rightarrow \quad E_{\text {cell }} \\
\&=0.44-\frac{0.0591}{2} \log \frac{10^{-3}}{1^{2}} \\
\& \therefore \quad E_{\text {cell }}
\end{aligned}=0.44-\frac{0.0591}{2} \times(-3) .
\] \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \\
\hline 27. \& \[
\begin{aligned}
\& \mathrm{k}_{1}=0.693 / 20 \\
\& \mathrm{k}_{2}=0.693 / 5 \\
\& \log \mathrm{k}_{2} / \mathrm{k}_{1}=\mathrm{Ea} / 2.303 \times \mathrm{R}\left(1 / \mathrm{T}_{1}-1 / \mathrm{T}_{2}\right) \\
\& \log (4)=\mathrm{Ea} / 2.303 \times 8.314(1 / 300-1 / 350) \\
\& \mathrm{Ea}=24.2 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
\] \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
1 \\
\hline 28. \& \& 1
1
1 \\
\hline 29. \& \begin{tabular}{l}
a) \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}\) \\
b) \(\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}\), bidentate ligand \(\quad(1 / 2+1 / 2)\) \\
c) When ligand approaches a transition metal ion, the d- orbitals split into two sets, one with lower energy and the other with higher energy. The difference of energy between the two sets of orbitals is know as crystal field splitting energy. \\
i) \(t_{2 g} 4 e_{g} 0\) \\
ii) \(\mathrm{t}_{\mathrm{g}} 3 \mathrm{eg}_{\mathrm{g}} 1\) \\
OR \\
c) \(\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}\) because wavelength is less energy will be more ,splitting will be
\end{tabular} \& 1
\(1 / 2\)
\(1 / 2\)
1
1

2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& more. \& \\
\hline 30. \& \begin{tabular}{l}
a) \(\mathrm{K}^{+} / \mathrm{K}>\mathrm{Mg}^{2+} / \mathrm{Mg}>\mathrm{Cr}^{3+} / \mathrm{Cr}>\mathrm{Hg}^{2+} / \mathrm{Hg}>\mathrm{Ag}^{+} / \mathrm{Ag}\) \\
b) It is an electrode whose potential is arbitrarily taken as zero or is exactly known. Standard Hydrogen Electrode (SHE). (any other words) \\
c) When an electrode is in contact with the solution of its ions in a half cell, it has a tendancy to loose or gain electrons which are known as electrode potential.
\[
\begin{aligned}
\& \mathrm{pH}=10 \\
\& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
\& {\left[\mathrm{H}^{+}\right]=10^{-10} \mathrm{M}}
\end{aligned}
\] \\
\(2 \mathrm{H}^{+}+\mathrm{e} \rightarrow \mathrm{H}_{2}(\mathrm{~g})\) \\
E cell \(=\mathrm{E}^{0}-\frac{0.0591}{n} \log \frac{\{P\}}{\{R\}}\) \\
E cell \(=0.0-\frac{0.0591}{2} \log \frac{\{1\}}{\{10-10\}}\) \\
E cell=-0.591V \\
OR \\
c) Element with higher oxidation potential than Fe will oxidise faster than iron preventing corrosion in iron. Oxidation potential of \(\mathrm{Fe}=0.44 \mathrm{~V}\) \\
Oxidation potential of \(A=2.37 \mathrm{~V}\) Oxidation potential of \(B=0.14 \mathrm{~V}\) \\
As A has higher oxidation potential than iron, it can be used for coating the surface of iron.
\end{tabular} \& 1
1
1
\(1 / 2\)
\(1 / 2\)
112
\(1 / 2\)
\(1 / 2\)

2

\hline 31. \& | a) This is because energy is required to remove one electron from Cu^{+}to Cu^{2+}, high hydration energy of Cu^{2+} compensates for it. Therefore, Cu^{+}ion in an aqueous solution is unstable. |
| :--- |
| b) Actinides exhibit larger oxidation states than lanthanides, because of the very small energy gap between 5 f , 6d and 7 s subshells. Thus, the outermost electrons get easily excited to the higher energy levels, giving variable oxidation states. |
| C) Cr^{2+} is reducing agent as its configuration changes from d 4 to d 3 , when it is oxidized to Cr^{3+}. The d^{3} configuration have a half-filled $\mathrm{t}_{2 \mathrm{~g}}$ level which is very stable. |
| d) $\mathrm{V}^{3+}, \mathrm{Cu}^{2+}$ due to unpaired electrons. |
| e) $3 \mathrm{MnO}_{4}{ }^{2-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ |
| f) Zr and Hf have almost identical radii due to lanthanoid contraction which is due to weak shielding of d-electrons. |
| g) The ability of O_{2} to stabilize higher oxidation states exceeds that of fluorine because oxygen can form multiple bonds with metals. | \& 5

\hline
\end{tabular}

32.	A=Aniline $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ $\mathrm{B}=$ Anilinium chloride $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}$ $\mathrm{C}=$ Benzene isonitrile $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}$ D= N-Phenylbenzenesulphonamide $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHSO}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ E= Benzene Diazonium chloride $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}$ $\mathrm{F}=\mathrm{p}$-Hydroxyazobenzene (Orange Dye) b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{CHCl}_{3}+\mathrm{KOH} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}$ (A) (C) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \xrightarrow{\text { NaNO2 }+\mathrm{HCl}, \text { ice cold water }} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}$ (A) (E) $\rightarrow-\mathrm{N}=\mathrm{N}-\mathrm{Cl}+$ $-\mathrm{N}=\mathrm{N}$ - (E) (F)	
	OR A) i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}<\mathrm{CH}_{3} \mathrm{NH}_{2}<\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$ ii) p -nitroaniline $<$ Aniline $<\mathrm{p}$-toluidine B) i) Ethylamine is soluble in water due to its capability to form H -bonds with water while aniline is insoluble in water due to larger hydrocarbon part which tends to retard the formation of H -bonds. ii) Due to presence of two H -atoms on N -atom of primary amines, they undergo extensive intermolecular H -bonding while tertiary amines due to the absence of a H -atom on the N -atom, do not undergo H - bonding. As a result, primary amines have higher boiling points than 3° amines. C) $\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\text { NH3,heat }} \mathrm{CH}_{3} \mathrm{CONH}_{2} \xrightarrow{\text { KOH,Br2 }} \mathrm{CH}_{3} \mathrm{NH}_{2}$	2 1 1 1
33.	A) i) Stronger ii) Negative deviation iii) -ive iv) -ive v) A mixture of acetone and choloroform (or any other) vi) Maximum boiling azeotrope	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$

