PRE BOARD QUESTION PAPER (2023-24)

CLASS XII CHEMISTRY

MARKING SCHEME (SET-A)

1	d) Ethyl magnesium bromide	1
2	b) Butan-2-one	1
3.	c) Propanone and 2-Methylpropan-2-ol	1
4.	d) A ^o _{NaCl}	1
5.	d) (n - 1) d ⁵ ns ²	1
6.	b) C_6H_5OH , NaOH and CH_3I	1
7.	c) Methyl isocyanide	1
8.	a) phospho diester linkage	1
9.	d) Quadruple	1
10.	d) i)=(C), (ii)=(A),(iii)=(D),(iv)=(B)	1
11.	b) $CH_2(CN) - CH_2(CN)$	1
12.	a) NaHSO3	1
13.	(c) A is true but R is false.	1
14.	(a) Both A and R are true and R is the correct explanation of A	1
15.	(b) Both A and R are true but R is not the correct explanation of A.	1
16.	(d) A is false but R is true.	1
17	The elevation in boiling point is given as,	1
	$\Delta T_b = K_b m = K_b w X1000/MW$	
	$\Delta T_{\rm b} \propto 1/M$	
	We have given that the molar mass of A > molar mass of B thus, B will show greater	1
	elevation in boiling point.	
18	$N_2 + 3H_2 \rightarrow 2NH_3$	
	$\mathbf{r} = -\frac{d [N2]}{dt} = -\frac{d [H2]}{3 dt} = \frac{1 d [NH3]}{2 dt}$	1⁄2
	$\frac{d [NH3]}{dt} = 2 \text{ x r} = 2.5 \text{ x } 10^{-4}$	1⁄2
	$r=2.5 \times 10^{-4}/2 = 1.25 \times 10^{-4}$	1⁄2
	$-\frac{d [N2]}{dt} = 1.25 \times 10^{-4} \text{ Ms}^{-1}$	1⁄2

19	A-Sucrose (C ₁₂ H ₂₂ O ₁₁)	1⁄2
	The mixture of D-(+)- glucose and D-(-)-Fructose is known as invert sugar.	1⁄2
	The linkage which holds the two monosaccharide units through oxygen atom is	
	called glycosidic linkage.	1
20	a) A= CH ₃ -CH=CH ₂	1/2
	b) B= CH ₃ -CH(Br)-CH ₃	1/2
	c) C=CH ₃ -CH(I)-CH ₃	1/2
	d) D=CH ₃ -CH(MgI)-CH ₃	1/2
21	a) Due to resonance one NH ₂ group undergoes or involved in resonance and hence	1
	can't participate in the formation of semicarhazone. Long pair of NH_2 group is not	
	involved in resonance and is available for nucleophillic attack.	
	b) This is due to the lone pairs on oxygen atom attached to hydrogen atom in the -	1
	COOH group are involved in resonance and hence making the carbon atom less	
	electrophilic. Hence, carboxylic acids do not give the reaction of carbonyl groups.	
	OR	
	a) Butanone <propanone<propanal <ethanal<="" td=""><td>1</td></propanone<propanal>	1
	b) 4-methoxy benzoic acid < benzoic acid < 4-nitrobenzoic acid < 3, 4-	1
	dinitrobenzoic acid	
22	(a) $\Delta_r G^0 = -nFE^0$	1/2
	= -2 × 96500 × 2.71 (∵ n = 2)	1⁄2
	= -523,030 J mol ⁻¹ = -523.03 KJ mol ⁻¹	1⁄2
	(b) Δ _r G ⁰ = - 2.303 RT log Kc	1⁄2
	= -2.303X8.31X298 log Kc	1⁄2
	log Kc=91.86	1⁄2
23	k ₁ =0.693/20	1/2
	k ₂ =0.693/5	1⁄2
	$\log k_2/k_1 = Ea/2.303 \times R (1/T_1 - 1/T_2)$	1⁄2
	log(4)= Ea /2.303×8.314 (1/300-1/350)	1⁄2
	Ea=24.2 kJ mol ⁻¹	1
24	i) $[Fe(en)_2Cl_2]$ Cl or x + 0 + 2 (-1) + (-1) = 0	1⁄2
	x + (-3) = 0 or x = +3	Each
	\therefore Oxidation number of iron, x = + 3	
	ii) The complex has two bidentate ligands and two monodentate ligands.	
	Therefore, the coordination number is 6.	
	iii) In the complex $_{26}$ Fe ³⁺ = 3d ⁵ 4s ⁰ 4p ⁰	
	Due to presence of one unpaired electrons in d orbitals the complex is	
	paramagnetic.	
	iv) The number of geometrical isomers are two.	
	(v) [Fe(en) ₂ Cl ₂] Cl, only cis-isomer shows optical isomerism.	

	vi) Dichlorido bis (ethane-1, 2- diamine) Iron (III) chloride.	
25	a) Electron pairs of Cl atom are in conjugation with n electrons of the benzene ring	1
	so C-Cl bond in chlorobenzene	
	acquires some double bond character while C-Cl bond in cyclohexyl chloride is a	
	pure single bond.C - Cl bond in chlorobenzene is shorter than in cyclohexyl	
	chloride Since dipole moment is a product of charge and distance so	
	chlorobonzono has lower dipolo moment than cycloboxyl chlorido	
	(b) Ally helides are paler malerules, therefore, their malerules are hold together.	1
	(D) Alkyt halides are polar molecules, therefore, their molecules are need together	1
	by dipole-dipole attraction. The molecules of H ₂ O are held together by H-bonds.	
	Since the new forces of attraction between water and alkyl halide molecules are	
	weaker than the forces of attraction already existing between alkyl halide- alkyl	
	halide molecules and water- water molecules, therefore, alkyl halides are	
	immiscible with water.	
	(c) Grignard's reagents are very reactive. They react with alcohol, water, amines	
	etc. to form corresponding hydrocarbon.	1
	$R-MgX + HOH \rightarrow RH + Mg(OH)X$	
	Therefore, Grignard's reagents must be prepared under anhydrous conditions.	
26	I) $CH_2CH_2CH_2OH \rightarrow CH_2CH_2COOH$	1
20	Propana La ol Propanoic Acid	
	Topanole Acid	
	(1)	
	он он он	4
	Br ₂ in CS ₂ + Br	1
	273 K	
	Phenol Br p - bromophenol o - Bromophenol (Major) (Minor)	
	(111)	1
	он он он	
	dilute HNO ₃	
		1
	NO_2 o – Nitrophenol p – Nitrophenol	
	(iv)	
	CHCl ₃ + aq. NaOH	
	Intermediate	
	СНО	
	Salicylaldehyde	
27.	a) Hell-Volhard-Zelinsky reaction : Carboxylic acid reacts with chlorine or bromine	1
	in presence of small quantities of red phosphorous to give exclusively α -chloro or	
-		

	Nucleotide = a phosphoric acid group , a pentose sugar and nitrogenous base.	1/2
29	 a) K⁺/ K > Mg²⁺/Mg > Cr³⁺/Cr> Hg²⁺/Hg >Ag⁺ /Ag b) It is an electrode whose potential is arbitrarily taken as zero or is exactly known. Standard Hydrogen Electrode (SHE). (any other words) c) When an electrode is in contact with the solution of its ions in a half cell, it has a tendancy to loose or gain electrons which are known as electrode potential. pH=10 	1 1
	Ph=-log[H ⁺] [H ⁺]=10 ⁻¹⁰ M	1/2
	$2H^+ + e \rightarrow H_2(g)$	1/2
	E cell = E ⁰ - $\frac{0.0591}{n} \log \frac{\{P\}}{\{R\}}$ E cell = 0.0 - $\frac{0.0591}{2} \log \frac{\{1\}}{\{10-10\}}$ E cell = - 0.591V	1/2 1⁄2
	OR	
	c) Element with higher oxidation potential than Fe will oxidise faster than iron preventing corrosion in iron. Oxidation potential of Fe =0.44 V Oxidation potential of A = 2.37 V Oxidation potential of B = 0.14 V	1
	As A has higher oxidation potential than iron, it can be used for coating the surface of iron.	1
30	a) $[Co(NH_3)_5 Cl]Cl_2$ b) $[Fe(C_2 O_4)_3]^{3-}$, bidentate ligand (1/2 +1/2)	1 1
	c) When ligand approaches a transition metal ion, the d- orbitals split into two sets, one with lower energy and the other with higher energy. The difference of	1
	I) $t_{2g}4 e_g0$ ii) $t_{2g}3 e_g1$	
	OR	
	c) [Co(CN) ₆] ³⁻ because wavelength is less energy will be more ,splitting will be more.	2
31	A)	3
	i) Stronger ii) Negative deviation	mark

	iii) -ive	each)
	iv) -ive	
	v) A mixture of acetone and choloroform (or any other) vi) Maximum boiling azeotrope	
	B) Δ Tf = i x $\frac{Kf xWb x1000}{Wa xMb}$	1/2
	CaCl ₂ is an electrolyte which dissociated as	1/2
	$CaCl_2 \rightarrow Ca^{2+} + 2Cl^{-}$	172
	i=3	
	$\Delta T_{f} = 3 \times \frac{1.86 \times 3 \times 1000}{100 \times 111}$	1/2
	$\Delta T_{f}=1.5$	
	Expering point $-272, 1 = 271 = 100$	
		1/2
	OR	
	A) W (mass) of cane-sugar = 5% means 5 g	
	Molar mass of cane-sugar (M) = 342 g mol-1	1⁄2
	Mass of isotonic substance X	
	= 0.877% means 0.877 g	1
	C1RT=C2RT	
	5/342 =0.866 / M	1/2
	M=59.2≈ 60 gmol ⁻¹	
	B) K _H =1.67X10 ⁸ Pa	
	P co2=2.53 x10 ⁵ Pa	
	$Pco_2 = K_H X \times CO_2$	1
	X _{CO2} =2.53 X 10 ⁵ pa /1.67 X 10 ⁸ pa	
	$X_{CO2}=1.5 \times 10^{-3}$	1
	$n_{CO2}/n_{H2O} + n_{CO2} = 1.5 \times 10^{-3}$	
	No.of moles of water present in 500 ml 55.5/2=27.7	1
	nCO ₂ = 1.5X 27.7= 41.55 millimoles	
32	a) This is because energy is required to remove one electron from Cu^+ to Cu^{2+} , high	1m
	hydration energy of Cu ²⁺ compensates for it. Therefore, Cu ⁺ ion in an aqueous solution is unstable.	each

b) Actinides exhibit larger oxidation states than lanthanides, because of the small energy gap between 5f, 6d and 7s subshells. Thus, the outermost elect	very rons
get easily excited to the higher energy levels, giving variable oxidation state	s.
c) Cr ²⁺ is reducing agent as its configuration changes from d4 to d3, when it i	is
oxidized to Cr ³⁺ . The d3 configuration have a half-filled t2g level which is ve	ery
stable.	
d) V ³⁺ , Cu ²⁺ due to unpaired electrons.	
$e)3MnO_4^{2^-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$	
f) Zr and Hf have almost identical radii due to lanthanoid contraction which	is due
to weak shielding of d-electrons.	
g) The ability of O_2 to stabilize higher oxidation states exceeds that of fluoring	ne
because oxygen can form multiple bonds with metals.	
33 a)	1/2
A=Aniline $C_6H_5NH_2$	1/2
$B=Anilinium chloride C_6H_5NH_3^+Cl^-$	1/2
$C = Benzene isonitrile C_6H_5NC$	1/2
$D = N$ -Phenylbenzenesulphonamide $C_6H_5NHSO_2 C_6H_5NH_2$	1/2
$E = Benzene Diazonium chloride C_6H_5N_2 Cl$	1/2
F= p-Hydroxyazobenzene (Orange Dye)	
b) $C_4H_5NH_2 + CHCl_2 + KOH \rightarrow C_4H_5NC + 3KCl + 3H_2O$	
	1
(A) (C)	
C_{H} NH $_{2}$ NaNO2+HCl, ice cold water	
(A) (E)	1
$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	
(E) (F)	
33 OR	
A) i) $C_6H_5NH_2 = C_6H_5 N(CH_3)_2 = CH_3NH_2 = (C_2H_5)_2NH_2$	1
ii) p-nitroaniline< Aniline< p-toluidine	1
B) i) Ethylamine is soluble in water due to its capability to form H-bonds with	n
water while aniline is insoluble in water due to larger hydrocarbon part which	h
tends to retard the formation of H-bonds.	1
ii) Due to presence of two H-atoms on N-atom of primary amines, they under	go

extensive intermolecular H-bonding while tertiary amines due to the absence of a H-atom on the N-atom, do not undergo H- bonding. As a result, primary amines	1
C) CH ₃ COOH $\xrightarrow{NH3,heat}$ CH ₃ CONH ₂ $\xrightarrow{KOH,Br2}$ CH ₃ NH ₂	1